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Summary 

Major histocompatibility complex (MHC)-I-associated peptides (MIPs) regulate the development 

and function of CD8 T cells, and represent the main targets of cancer immunosurveillance. 

Importantly, MIPs originate from specific regions of the genome. While all proteins contain 

peptide sequences that could potentially bind to MHC-I molecules, most of these sequences never 

become MIPs. Here, we report that MIP biogenesis is regulated at the translational level by codon 

usage in the mRNA regions flanking MIP-coding codons. Using different bioinformatics methods, 

including artificial neural networks, we analyzed large datasets of transcripts that did, or did not, 

encode MIPs. We found that certain synonymous codons had disparate effects on MIP biogenesis. 

Notably, the rules derived from analyses of human MIPs also applied to mouse MIPs. We further 

validated our in silico results using an in vitro quantitative assay based on the model MIP 

SIINFEKL (OVA257-264). Following transduction with inducible GFP-OVA-Ametrine constructs, 

swapping of synonymous codons in the regions flanking the SIINFEKL codons modulated 

SIINFEKL presentation. We conclude that codon usage in MIP-flanking sequences is an 

evolutionary conserved regulator of MIP biogenesis. 

 

Keywords: immunopeptidome, codon usage, MHC-I associated peptides (MIPs), Defective 

ribosomal products (DRiPs), Artificial Neural Networks  
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Introduction  

In jawed vertebrates, all nucleated cells present at their surface major histocompatibility complex 

(MHC) class I-associated peptides (MIPs), which are collectively referred to as the 

immunopeptidome (Caron et al., 2015; Granados et al., 2015). Recognition of abnormal MIPs is 

essential to the elimination of infected and neoplastic cells (Schumacher and Schreiber, 2015). 

Furthermore, self MIPs play a central role in shaping the adaptive immune system: they orchestrate 

the development of CD8 T cells in the thymus, as well as their survival and activation in peripheral 

organs (Davis et al., 2007). Given the pervasive role of the immunopeptidome, systems-level 

understanding of its genesis and molecular composition is a central issue in immunobiology (Caron 

et al., 2011).  

 

High-throughput mass spectrometry analyses have revealed that MIPs originate from selected 

regions of the genome and that the immunopeptidome is not a random excerpt of the transcriptome 

or the proteome (Granados et al., 2015). Indeed, proteogenomic analyses of 25,270 MIPs isolated 

from B lymphocytes of 18 individuals showed that 41% of expressed protein-coding genes 

generated no MIPs, while 59% of genes generated up to 64 MIPs/gene (Pearson et al., 2016). The 

notion that the MIP repertoire presents only a small fraction of the protein-coding genome 

monitored by the immune system begs the question: what are the rules governing the molecular 

composition of the immunopeptidome? Relatedly, is it possible to predict which parts of the 

proteome will be presented by MHC-I molecules? These questions are particularly relevant to the 

identification of immunogenic antigens that can be targeted for immunotherapeutic treatment of 

cancer as well as autoimmune diseases. Indeed, immunization against cancer-specific antigens can 

elicit protective anti-tumor responses, while nanoparticles coated with self-peptides can be used to 



4 

 

treat autoimmune conditions (Clemente-Casares et al., 2016; Fleri et al., 2017; Laumont et al., 

2018; Schumacher and Schreiber, 2015; Yadav et al., 2014). 

 

The fact that only a specific part of the genome generates MIPs suggests that the genesis of the 

immunopeptidome can be conceptualized as two main events: (a) the biogenesis (or pre-selection) 

of MIPs candidates, and (b) a subsequent filtering step through the binding of the candidates to the 

available MHC-I molecules. Rules that regulate the second event, i.e. the binding of MIPs to MHC-

I molecules, have been well characterized by artificial neural networks (ANN) (Bassani-Sternberg 

and Gfeller, 2016; Nielsen and Andreatta, 2016). However, it is currently impossible to predict the 

first event; that is, which peptides will ultimately reach MHC-I molecules following a multistep 

processing in the cytosol and endoplasmic reticulum. The consideration of preferential sites of 

proteasome cleavage has proven useful to enrich for MIP candidates, but remains insufficient for 

MIP prediction, mostly because of prohibitive false discovery rates (Abelin et al., 2017; Capietto 

et al., 2017; Nielsen et al., 2005). 

 

Most efforts at modeling MIP processing have focused on post-translational events (e.g., cleavage 

by proteases) and their regulation by the amino acid sequence of MIPs and of their flanking 

residues (typically 10-mers at the N- and C-termini). However, a large body of evidence suggests 

that MIPs are produced during translation or a few minutes afterward (Antón and Yewdell, 2014). 

Indeed, many MIPs derive from defective ribosomal products (DRiPs); that is, polypeptides that 

fail to achieve a stable and functional conformation during translation and that are consequently 

rapidly degraded. While the genetic code is redundant, i.e. many (synonymous) codons are 

translated into the same amino acids, these synonymous codons are not used in equal frequencies. 



5 

 

This phenomenon is termed codon-usage bias. Notably, the precision and efficiency of protein 

synthesis heavily depends on codon usage (i.e. which codons are used at specific positions in the 

mRNA sequence) (Cannarozzi et al., 2010; Plotkin and Kudla, 2011). In our effort to decipher the 

rules of MIP biogenesis, we analyzed the codon usage of transcripts that encode or do not encode 

for MIPs. We used several bioinformatics tools including ANNs for their ability to provide a 

powerful and flexible array of methods to model non-linear interactions in large datasets (LeCun 

et al., 2015). Although historically ANNs have been used essentially for their capacity to make 

predictions, the fact that a trained ANN is a deterministic mathematical function trained to answer 

specific questions support their use as powerful exploratory tools. Therefore, we developed an 

artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP 

presentation solely from mRNA sequences flanking the MAP coding regions. We found that, in 

human cells, the distribution of synonymous codons in RNA sequences flanking MIP codons was 

different from their distribution in the global transcriptome. Furthermore, CAMAPs trained on 

human samples could predict MIP-generating sequences in both human and mice samples. Finally, 

we validated in an in vitro model that modulation of synonymous codon usage in the regions 

flanking MIP sequences significantly altered protein synthesis and MIP biogenesis. 

  



6 

 

Results 

Low affinity c odons are enriched in MIP-source transcripts  

Our dataset was constructed with MIPs presented by 33 HLA class I alleles on B lymphocytes 

from 18 subjects (Granados et al., 2016; Pearson et al., 2016). From the entire datasets, we 

extracted the 19,656 9-mer MIPs with a predicted MHC binding affinity ᾽ 1,250 nM for at least 

one of the subjectôs MHC-I allotypes, according to NetMHC3.4 (Lundegaard et al., 2008). We 

then used pyGeno (Daouda et al., 2016) to extract the sequences of transcripts coding for these 

19,656 MIPs which constituted our positive dataset. We next created a negative (or decoy) dataset 

by randomly selecting 98,290 non-MIP 9-mers from transcripts that generated no MIPs, and also 

extracted their coding sequences using pyGeno. We reasoned that a transcript should be considered 

as a genuine positive or negative (regarding MIP biogenesis) only if it was expressed in the cells 

that were being studied. We therefore excluded from the datasets all transcripts whose expression 

was barely detectable (below the 99th percentile in terms of FPKM). The resulting positive and 

negative datasets therefore contained the canonical reading frame of non-redundant MIP-source 

transcripts (n = 19,656) and non-source transcripts (n = 98,290), respectively (Fig. 1).  

Codon usage bias regulates translation dynamics, and thereby affects translation efficiency, 

accuracy, and protein folding (Frenkel-Morgenstern et al., 2012; Yu et al., 2015). To evaluate 

whether codon-anticodon affinity might influence MIP biogenesis, we compared the global usage 

of high affinity codons, as defined by Frenkel-Morgenstern et al. (2012), between the 19,656 MIP-

source transcripts and the 98,290 non-source transcripts. Transcript sequences were separated 

along their lengths in 100 bins of equal size, each bin representing one percentile on the length. 

For each bin, we then calculated the frequency of high affinity codons for source and non-source  
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Figure 1. Construction of the dataset. Transcripts expressed in B cells from 18 subjects were considered 

as source or non-source transcripts depending on their match with at least one MIP. The entire length of 

source and non-source transcripts (from start to stop codon) was used for analyses of codon affinity (Fig. 

2A). For other analyses of codon usage (Fig. 2B, Fig. 3 to 6), we focused our attention on mRNA sequences 

more closely adjacent to the nine MIP-coding codons (MCCs), i.e. up to 162 nucleotides on each side of 

MCCs.  

transcripts (Fig. 2A). The two resulting distributions differed significantly at every position (p < 1 

x 10-16, Fisher exact test). The salient feature was that MIP-source transcripts contained a lower 

proportion of high affinity codons than non-source transcripts. The discrepancy between the two 

gene sets was particularly conspicuous on the 5ô-side of the mRNAs, i.e. the initial 25% of the 

mRNA sequences. Usage of high affinity codons increased continuously when progressing from 

the 5ô- to the 3ô-end of MIP-source transcripts, but never reached the frequency found in non-

source transcripts (Fig. 2A). The relatively low frequency of high affinity codons in MIP-source 

transcripts provides a plausible mechanistic link between two seemingly unrelated observations; 

one, that cell cycle-regulated genes are enriched in low affinity codons (Frenkel-Morgenstern et 

al., 2012) and two, that transcripts enriched in low affinity codons are a preferential source of MIPs 

(Pearson et al., 2016). 
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Figure 2. Codon usage in positive and negative datasets. (A) High-affinity codon usage with respect to 

normalized transcript length. Areas around the curves represents 95% confidence intervals. (B) KL 

divergences in positive vs. negative datasets. The Ὀ Ὀȿȿὖ  (y) axis shows the divergences between 

codon distributions in positive and negative datasets, the Ὀ ὈὛȿȿὖὛ (x) axis shows divergences after 

synonymous codon shuffling. 
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Distribution of synonymous codons 

For the next series of analyses, we reasoned that translational and co-translational events 

happening in the direct vicinity of MCC could have a disproportionate impact on MIP presentation. 

We therefore, focused our attention on mRNA sequences more closely adjacent to the nine MIP-

coding codons (MCCs). We limited our analyses of flanking sequences to 162 nucleotides (54 

codons) on each side of MCCs, because longer lengths would entail the exclusion of a significant 

proportion of transcripts (Supplementary Fig. S1). Because we were searching for features that 

might influence MIP generation rather than binding of MIP to MHC, we elected to analyze the 

MIP context rather than MCCs per se. We therefore removed the 9 central codons (i.e., the MCCs) 

from the positive and negative datasets and kept only the MCC-flanking sequences (Fig. 1). To 

investigate the relative importance of codon vs. amino acid usage in MIP biogenesis, we compared 

the codon and amino acid distributions in the positive and negative datasets using Kullback-Leibler 

divergence (see below). A higher divergence for codon distributions than for amino acid 

distributions would indicate that codon variations are not entirely accounted for by amino acid 

variations. To address this question, we derived shuffled positive and negative datasets in which 

the original codons were replaced by synonymous codons according to their usage frequency in 

the datasets. 

 

We then defined the probability of having codon c at position i as a function of the number of 

occurrences of c at position i, divided by the total number of occurrences of that same codon: 

ὗ ȟȟ Ὥ
ὔȟȟὭ

Вὔȟȟ Ὦ
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Here Q is a probability, N is a number of occurrences, c is a codon, y is a class (positive or 

negative), s indicates if codons have been randomized (true or false), i is a position in sequence. 

For the remainder of the text we will use the following abbreviations: 

ὖὭ  ὗȟ ȟ Ὥ 

Ὀ Ὥ  ὗȟ ȟ Ὥ 

ὖὛ Ὥ  ὗȟ ȟ Ὥ 

ὈὛ Ὥ  ὗȟ ȟ Ὥ 

We then used the Kullback-Leibler (KL) divergence to compute how well ὖ distributions 

approximate Ὀ distributions and ὖὛ distributions approximate ὈὛ distributions. 

The KL divergence was defined as: 

Ὀ ὖȿȿὗ  ὖὭÌÏÇ 
ὖὭ

ὗὭ
 

Its value can be either positive or 0, a null value indicating that the two distributions are identical. 

KL divergence is not a metric, as it is neither symmetric nor does it satisfy the triangle inequality. 

It is nevertheless an accurate and most common way of comparing two probability distributions. 

 

The random shuffling causes any codon specific features to be shared among synonyms, causing 

every codon distribution to reflect its amino acid distribution. If synonymous codons and amino 

acid distributions were equivalent, the only observed variations would reflect some increase in the 

variance arising from splitting 20 amino acid distributions into 61 codon distributions. Therefore, 

values for Ὀ Ὀȿȿὖ  would be almost equal to values for Ὀ ὈὛȿȿὖὛ, and codons would 
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cluster along the diagonal. However, the only codons on the diagonal are ATG(M) and TGG(W) 

that have no synonyms, and TAT(Y), TAC(Y) (Fig. 2B) that have very similar distributions 

(Supplementary Fig. S2 and S3). This finding shows that codon distributions are different from 

amino acid distributions. Moreover, variations at the codon level were higher than variations at the 

amino acid level for 47 codons (77%, above the diagonal in Fig. 2B). Codons also did not cluster 

by amino acids along the Ὀ Ὀȿȿὖ  diagonal, which shows that the level of divergence varies 

among synonymous codons. This finding indicates that the breadth of synonymous codon 

variations cannot be explained by common amino acid features. In other words, the variations 

observed when comparing positive and negative datasets at the codon level cannot be explained 

by variations at the amino acid level. These results suggest that codon usage bias in MIP-flanking 

regions could play a role in MIP biogenesis.  

 

Source sequences are less stable and enriched in out-of-frame stop codons  

Ribosomal frameshifting, frequently followed by encounter of an out-of-frame stop codon (OSC), 

is an important source of DRiPs and MIPs (Antón and Yewdell, 2014; Laumont and Perreault, 

2018; Laumont et al., 2016). We therefore evaluated codon enrichment in alternative reading 

frames (ARF) flanking MIP codons (162 nucleotides upstream and downstream). Enriched codons 

were defined as having an odds ratio significantly greater than 1.1 (p < 0.05, one-sided Fisher exact 

test) in the positive vs. negative dataset. Strikingly, a strong enrichment in OSCs was detected for 

ARF -1. More than any other codon, TGA and TAA stop codons were significantly enriched in 78 

and 77% of positions, respectively, while the TAG stop codon was the eighth most enriched codon 

(Fig. 3A, top panel and Supplementary Fig, S4). By contrast, ARF +1 showed a smaller enrichment 

in OSCs (Fig. 3A, bottom panel).  
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Figure 3. Source sequences show enrichment in stop codons in ARFs. (A) Top 20 enriched codons in 

source vs non-source transcripts in ARFs flanking MIP codons (162 nucleotides upstream and 

downstream). Counts represent the number of codon positions where enrichment (p < 0.05, one-sided Fisher 

exact test with odds ratio >1.1) was observed in MIP-source sequences (relative to the negative dataset). 

Stop codons are highlighted in red. (B) Enrichment of stop codons in ARF per position in close proximity 

to the MCC (calculated as in a). Position -1 was omitted because of the reading-frames overlapping the 

MCC. *, ** and *** reflect significance thresholds 0.05, 0.01 and 0.001, respectively. (C) Frequency 

difference of the Minimum Free Energy (MFE) between source and non-source transcripts binned in 100 

intervals ranging from -200 to -120 kcal/mol. Source (red) and non-source (blue) sequences were limited 

to the MCC flanked with 90 nucleotides on each side, and were folded using the MC-Flashfold program. 

Non-source counts were divided by 5 to get equivalent numbers of values in each bin. 
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Numerous studies have reported cases in which gene regulation occurs through a -1 frameshift 

mechanism, a well-characterized phenomenon in prokaryotic and viral settings (Barry and Miller, 

2002; Gurvich et al., 2003; Sharma et al., 2014). Also, it was shown that codon choice and GC 

content correlate with the presence of OSCs (Tse et al., 2010). Interestingly, while we found OSCs 

both pre- and post-MCC, they were particularly enriched in the post-MCC context in the ARF -1 

(Fig. 3B). This suggests that premature translation termination following a ribosomal frameshift 

promotes the generation of DRiPs and MIPs (Yewdell et al., 1996).  

 

RNA instability favors protein misfolding and DRiP formation (Faure et al., 2017). Since the 

folding landscape of RNA sequences relies heavily on nucleotide composition, we performed RNA 

folding analysis on both positive and negative datasets. MIP-flanking sequences clearly exhibited 

higher minimum free energy, and therefore less thermodynamically stable structures than 

sequences in the negative dataset (Fig. 3C). In line with this observation, MIP-flanking sequences 

showed a reduced GC content (Supplementary Table S1), a feature associated with decreased RNA 

stability. Taken together, these results show that RNA sequences flanking MCCs display two 

features associated with DRiP formation: they are enriched in OSCs and are less stable than the 

global transcriptome. 

 

CAMAP  results link codon usage to MIP presentation 

To further assess the importance of codon usage in MIP biogenesis, we reasoned that if codons 

bear important information that is operative at the translational rather than the post-translational 

level, then: (i) ANNs trained to identify MCC-flanking regions should consistently perform better 

when trained on RNA sequences than on amino acid sequences, and (ii) synonymous codons 
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should have different effects on the prediction. To test these predictions, we designed a three-layer 

ANN called Codon Arrangement MAP Predictor (CAMAP) depicted in Supplementary Fig. S5A, 

using the machine learning framework Mariana (Daouda, 2015) 

[https://www.github.com/tariqdaouda/Mariana]. The first (input) layer received either MCC-

flanking regions from the positive dataset or sequences of the same length contained in the negative 

dataset (Fig. 1, Supplementary Fig. S5). The second layer was a codon embedding layer similar to 

that introduced for a neural language model (Bengio et al., 2003). Embedding is a technique used 

in natural language processing to encode discrete words, and has been shown to greatly improve 

performances (LeCun et al., 2015). In this technique, the user defines a fixed number of dimensions 

in which words should be encoded. When the training starts, each word receives a random vector-

valued position (its embedding) in that space. The network then iteratively adjusts the wordsô 

embedding vectors during the training phase and arranges them in a way that optimizes the 

classification task. Notably, embeddings have been shown to represent semantic spaces in which 

words of similar meanings are arranged close to each other (LeCun et al., 2015). In the present 

work, we treated codons as words: each codon received a set of random 2D coordinates that were 

subsequently optimized during training. The third (output) layer delivered the probability that the 

input sequence was an MCC-flanking region (rather than a sequence from the negative dataset).  

 

To first evaluate the consistency of our findings, we tested the performance of this architecture on 

several datasets corresponding to different lengths of flanking sequences (context sizes). The 

maximum context size that we used was 162 nucleotides (54 codons) on each side of the MCCs in 

the positive dataset and of non-MCCs in the negative dataset, because longer lengths would have 

excluded more than 25% of the transcripts from our datasets (Supplementary Fig. S1). For each 
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context size, we randomly divided the positive and negative datasets into three subsets: (1) the 

training subsets containing 60% of the positive and negative transcripts, (2) the test and (3) 

validation subsets each containing 20% of the positive and negative transcripts. We used the 

transcripts of the training subsets to train our models and used the validation subsets to implement 

an early stopping strategy and report the results obtained on the test subsets. The values for the 

area under the receiver operator characteristic curve (ROC/AUC) reported here were all obtained 

on the test subsets, i.e. examples that have not been used for training or early stopping strategy. 

These results show that increasing the context size had a positive effect on the performances, 

suggesting that MCC-flanking regions regulate MIP presentation at different ranges (Fig. 4A, left). 

Performances on the training and validation subsets are presented in Supplementary Fig. S5.  

 

To test the hypothesis that codons bear important information (regarding MIP presentation) that 

amino-acids do not, we shuffled synonymous codons according to their frequencies in the human 

transcriptome. This transformation erases codon-specific information and causes every codon 

distribution to reflect that of its amino acid. We applied the same transformation to the positive 

and negative datasets, and trained a new set of networks on these transformed datasets. We 

observed that predictions were consistently better when CAMAPs received the original codons 

(Fig. 4A, left) than when they received shuffled synonymous codons (Fig. 4A, right). This result 

further supports the concept that MIP biogenesis is regulated by the RNA sequences flanking 

MCCs. To evaluate whether any part of the context was particularly important to the prediction, 

we trained CAMAPs with either the mRNA sequence preceding or following the MCCs (red and 

green lines in Fig. 4A). In both cases performances were poor (Fig. 4A). For example, when 
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comparing the predictions given by models trained with only the pre-MCC context to those trained 

with the  

 

Figure 4. Codon arrangement MAP Predictors (CAMAPs) predictions on MIP-flanking sequences. 

(A) Area under the curve (AUC) score for context sizes of 9, 27, 81 and 162 nucleotides. Ten CAMAPs 

were trained per condition, the areas around the curves represents 95% confidence intervals. (B) Correlation 
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between CAMAP predictions for a given sequence, using a context size of 162 nucleotides: predictions for 

pre-MCC vs post-MCC contexts (top), pre-MCC vs whole context (middle), post-MCC vs whole context 

(bottom). Blue lines represent 2D densities. 

post-MCC context, we noted that these predictions were weakly correlated (ὶ πȢσσ) (Fig. 4B). 

However, when we compared the predictions of either model to those obtained when training on 

full contextual sequences, the correlations were much higher (ὶ πȢχχ). Collectively, these results 

suggest that, if RNA sequences are considered individually, both contexts (pre- and post-MCCs) 

bear important and non-redundant features for MIP prediction.  

 

CAMAP s unveil positional codon preferences 

ANNs still carry the reputation of being undecipherable black boxes. It is true that the 

interpretation of the inner structures of deep ANNs is still in its infancy. On the other hand, simpler 

architectures, such as the one used herein, can be more easily probed to yield useful information 

about the way predictions are being made. Indeed, a trained ANN remains a fixed set of 

mathematical transformations that can be studied, analyzed and, in theory, interpreted. In order to 

assess the effect of individual codons on the overall prediction, we therefore presented a single 

codon at a single position to the best model trained on codon sequences, with a context size of 162 

nucleotides. By running this setup for every codon at every position, while reporting the prediction, 

we isolated the model preferences for individual codons (Fig. 5A and B). In other words, 

preferences are the probabilities retrieved when only a specific codon is presented at a single 

position. A value of 0.5 therefore denotes a neutral preference, while negative and positive 

preferences correspond to values below and above 0.5, respectively. Preferences for all codons are 

available in Supplementary Fig. S6. 
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Figure 5. CAMAP  interpretation of codon impact on MIP biogenesis. Preferences for a network trained 

on a context of 162 nucleotides (54 codons) for (A) serine, proline and tyrosine codons, and (B) leucine 

codons. (C) Learned codon embeddings and preferences at the position directly preceding the MCCs. 

Proline codons were the only synonyms that formed a conspicuous cluster. As indicated by the size of the 

dots, codons on the right-hand side increased the probability of the sequence being classified as source, 

whereas codons on the left-hand side of the graph had the opposite effect.  

 

While codons at all positions contributed to the prediction, the most influential were those located 

around 4-5 positions before or 2-3 positions after the MCC. The presence of specific codons at 

those positions can greatly increase (e.g. Serine codons) or decrease (e.g. Proline codons) the 

modelôs output probability (Fig. 5A). In this narrow region, preferences exhibit a strong symmetry 

centered around the MCCs, where an increase in preference before the MCCs was always matched 

with an increase after the MCCs and vice-versa. Interestingly, when located in the close vicinity 

of MCCs, prolines have been shown to decrease MIP biogenesis by preventing proteasomal 
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cleavage (Shimbara et al., 1998), which is reflected by the lower preferences for all proline codons 

around the MCC. In other cases, we observed that synonymous codons had divergent impacts. 

Indeed, CAMAP favored one tyrosine codon (TAT) but disfavored the other (TAC) (Fig. 5A, 

lower panel). The situation was even more complex for leucine, as two codons were considered 

neutral, whereas one was favored and three were disfavored by CAMAP (Fig. 5B). While CAMAP 

showed similar preference for several synonymous codons, the preference magnitude showed 

major discrepancies among them. Examples of codons that exhibited much higher variations than 

their synonyms are TGT for cysteine, GAT for aspartic acid, TTT for phenylalanine, CAT for 

histidine, AAG for lysine, AAT for asparagine, and ACG for threonine (Supplementary Fig. S6).  

 

The use of embeddings to encode codons has the advantage of arranging them into a semantic 

space, wherein codons with similar influences are positioned close to each other. We calculated 

the resulting semantic space as well as the preferences for every codon for the position directly 

preceding the MCCs (Fig. 5c). Most synonymous codons did not form clusters, with a notable 

exception being proline codons. This finding indicated that the effect of a given codon on the 

prediction may be closer to that of a non-synonymous codon than to that of a synonym. We also 

determined the change of preferences for every codon at every position in the sequence, depicted 

on the embedding space (Supplementary Video S1). Altogether, these results highlight the specific 

influence of individual codons on the prediction, and further support the conclusion that codon 

choice plays a determining role in MIP biogenesis.  
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Rules of MIP biogenesis are conserved 

We next wished to determine whether the rules that are used by CAMAP to predict MIP-

presentation are conserved across cell types and species. To answer this question, we first trained 

a CAMAP using the flanking sequences of MIPs identified by mass spectrometry analyses of 

human B-lymphocytes, as in Fig. 4. This CAMAP was then evaluated on a test set (including 

positive and negative sequences that were not used for CAMAP training). As shown in Fig. 6A, 

67.9% of positive sequences had a prediction score > 0.5, while 64.8% of negative sequences had 

a score < 0.5.  

 

Figure 6. MIP presentation rules derived by CAMAP  are conserved across species and cell types. 

CAMAP-derived prediction scores of (A) human B cells sequences (B-lymphoblastoid cell line, B-LCL) 

and (B) RNA sequencing reads from the murine colon carcinoma cell line CT26. Predictions scores for A 

and B are derived from the same CAMAP trained with a human B-LCL training set. Positive sequences are 

compared either to negative sequences (A) or the whole transcriptome (B). Correlation between CAMAP 

prediction score and MHC-I binding score for human B-LCL (C) and mouse CT26 (D).  Of note, the higher 

proportion of strong binders in the human dataset is due to the fact that it has been designed to contain 1/5 
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of source sequences (MHC-I affinity < 1,250 nM), whereas the mouse dataset is an unfiltered representation 

of the transcriptome.  

We then used this same CAMAP (i.e. trained on human B-lymphocyte sequences) to extract 

prediction scores from a dataset derived from CT26 cells, a murine colon carcinoma cell line 

(Laumont et al., 2018). Positive sequences (n=835) here have been compared to the whole CT26 

transcriptome. Notably, 60.7% of positive sequences were correctly classified (prediction score > 

0.5), while 68% of the transcriptome was predicted to be non-source (score < 0.5, Fig. 6B). 

Consistent with the fact that the input included MCC-flanking sequences but not MCC themselves, 

the CAMAP prediction scores were completely independent of the MIP/MHC-binding affinity for 

both human and murine sequences (Fig. 6C and D). These results imply that the rules learned by 

CAMAP on human healthy B-LCL cells also apply to mouse CT26 colon carcinoma cells, and are 

therefore conserved across these two very different cell lines derived from different species.  

 

In vitro  validation of the role codon usage in MIP presentation 

We next wished to validate predictions of our CAMAPs in a biological system and to gain some 

insight into how codon usage might regulate MIP biogenesis. To do so, we generated three 

inducible reporter constructs that contained amino acids 144-386 of chicken ovalbumin (OVA) 

flanked by eGFP-P2A (at the 5ô end) and P2A-Ametrine (at the 3ô end) (Cinelli et al., 2000; 

Shcherbakova et al., 2012). The wild-type cDNA sequence encoding the model SIINFEKL MIP 

(OVA257-264) was located in the center of the three constructs. The sole differences between the 

three constructs were the OVA RNA sequences that flanked the SIINFEKL-coding codons i.e., 

RNA sequences coding OVA144-256 and OVA265-386. The variable SIINFEKL-flanking sequences 

coded for the same amino acids but used different (synonymous) codons. In one case, the codons 

corresponded to those of wild type OVA (OVA-WT). In the other two cases, we used CAMAP 
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learned codon preferences (trained on human B-LCL sequences; Fig. 4 and 5), to design in silico 

two OVA variants: one predicted to maximize the presentation of SIINFEKL (enhanced 

presentation, or EP), the other predicted to minimize it (reduced presentation, or RP). CAMAP 

prediction scores for OVA-EP, OVA-RP and OVA-WT were respectively: 0.96, 0.03, and 0.65 

(Fig. 7A). In addition to OVA144-386, each construct coded for two other proteins: eGFP and 

Ametrine. We used eGFP to evaluate transduction efficacy and the Ametrine/eGFP ratio to assess 

translation efficacy. Indeed, we reasoned that full -length translation of the construct would 

produce equal numbers of Ametrine and eGFP proteins but that interrupted translation (i.e., DRiP 

formation) would decrease the Ametrine/eGFP ratio (Fig. 7B). Of note, start codons from the OVA 

and Ametrine sequences were removed to ensure that translation would begin solely with the 

eGFP-start codon. Also, the three proteins were separated with P2A self-cleaving peptides (Kim 

et al., 2011), to prevent artefacts caused by fusion proteins (Fig. 7A). The amount of SIINFEKL 

MIPs presented at the surface of RAW-Kb cells was estimated after co-culture with the CD8 T cell 

hybridoma cell line B3Z which produces ɓ-galactosidase in response to the SIINFEKL MIP 

(Shastri and Gonzalez, 1993). To remove the influence of differing gene expression levels on the 

levels of SIINFEKL presentation, results were normalized by both the eGFP mean fluorescence 

intensity and the proportion of transduced cells in each specific sample. Therefore, the most crucial 

feature of our model was that any difference between the three constructs could be ascribed solely 

to synonymous codon variants in the SIINFEKL-flanking OVA codons. 

 

Two main findings emerged from our analyses. First, in accordance with CAMAP predictions, the 

OVA-EP variant led to a significant 2-fold increase in SIINFEKL presentation, when compared to 
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both OVA-WT and OVA-RP variants (Fig. 7C). SIINFEKL presentation by OVA-RP transduced 

cells was reduced relative to OVA-EP levels at all time points, and became inferior to OVA-WT  

 

Figure 7. Codon usage influences antigen presentation and translation efficiency. (A) Design of the 

inducible Translation Reporter (iTR-OVA) constructs and prediction scores for OVA-WT, OVA-EP and 

OVA-RP sequences. (B) Schematic representation of possible translation events. When mRNA codon 

usage leads to efficient (uninterrupted) translation, similar amounts of eGFP and Ametrine proteins would 

be synthesized. When codon usage in the MCC-flanking regions enhances the frequency of translation 

interruption, a lower Ametrine/eGFP ratio would be observed. (C) Kinetics of SIINFEKL presentation as a 

MIP at the cell surface following induction of iTR-OVA constructs expression by doxycycline, measured 

by colorimetric LacZ activity in a T-cell activation assay. To remove the influence of differential expression 

levels on antigenic presentation (Pearson et al., 2016) and to account for the varying proportion of 

transduced cells from one sample to another, T-cell activation levels were normalized to both the mean 

eGFP fluorescence intensity and the proportion of cells expressing the construct. (D) Translation efficiency 

as measured by Ametrine/eGFP ratio following iTR-OVA construct induction. For C and D, results for EP 
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and RP are normalized over WT sample from the same experiment. Statistical differences at each time point 

were determined using bilateral paired Student T test. Comparison against WT are indicated with *, while 

comparisons of EP vs RP are indicated with À. 

levels at 24h post-induction. Second, translation efficiency (Ametrine/eGFP ratio) was always 

higher in cells transduced with OVA-RP than cells transduced with OVA-EP or OVA-WT (Fig. 

7D). Hence, synonymous codon variations led to divergent outcomes in OVA-EP and OVA-RP: 

enhanced translation efficiency in OVA-RP and enhanced SIINFEKL presentation in OVA-EP. 

These data suggest that, since improvement in SIINFEKL presentation by OVA-EP could not be 

ascribed to increased translation efficiency, it may instead have resulted from increased DRiP 

formation during translation of SIINFEKL-flanking OVA sequences.  

 

Discussion 

Each HLA allotype presents no more than 0.1% of the potential 9-mer peptides from human 

protein-coding genes (Abelin et al., 2017). A recent report showed that the entire MIP repertoire 

presented by 27 HLA allotypes covered only 10% of the exomic sequences expressed in B 

lymphocytes (Pearson et al., 2016). In line with this finding, less than 1% of expressed tumor 

mutations generate immunogenic MIPs (Yadav and Delamarre, 2016). The need for peptides to be 

strong MHC binders in order to become MIPs severely constrains the diversity of the MIP 

repertoire. However, MHC binding is not the sole limiting factor. Indeed, while practically all 

proteins contain peptides that would be strong MHC binders (Hoof et al., 2012), about 40% of 

proteins generate no MIPs while other proteins can generate up to 64 MIPs/gene (Pearson et al., 

2016). Hence, some proteins are good sources of MIPs while others are not. Therefore, events that 

precede MHC binding must have a determinant influence on the biogenesis of the 

immunopeptidome. Efforts to decipher the rules of MIP processing have heretofore focused on 
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various post-translational events: cleavage by the proteasome and other proteases, and binding to 

proteins such as TAP1/2 and ERAAP. However, seminal studies have demonstrated that MIP 

biogenesis is clearly regulated at the translation level, and that most MIPs originate from proteins 

that undergo proteasomal degradation co-translationally or in the minutes that follow translation 

(Dolan et al., 2011). This pool of rapidly degraded proteins includes a large proportion of DRiPs 

that arise from errors in protein translation or folding.  

 

Because codon usage regulates translation accuracy, efficiency and co-translational protein 

folding, we investigated whether codon choice might regulate MIP biogenesis. Our analyses of 

large datasets using diverse bioinformatics approaches provides compelling evidence that codon 

usage regulates MIP biogenesis via both short- and long-range effects. Over their entire length, 

MIP-source transcripts use more low affinity codons than the rest of the transcriptome (Fig. 1A). 

More in-depth analyses of the flanking codons on each side of the MCCs revealed differential 

usage of synonymous codons in the MCC flanking regions compared to the rest of the 

transcriptome (Fig. 2, 4). Mechanistically, two features of MCC-flanking sequences can explain 

the impact of codon usage on MIP biogenesis (Fig. 3): these mRNA sequences are less stable than 

the rest of the transcriptome and are enriched in out-of-frame stop codons. These two features are 

expected to increase DRiP formation since RNA instability promotes protein misfolding while 

stop codons induce non-sense-mediated decay (Karousis et al., 2016; Pearson et al., 2016). 

Interestingly, most out-of-frame stop codons were found in the -1 frameshifted sequence. This 

result could indicate that cells are biased towards presenting MIPs derived from sequences prone 

to -1 ribosomal slippage, a frameshift that is also associated with viral sequences (Atkins et al., 

2016; Dinman, 1995; Wang et al., 2019). 
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Our study illustrates that ANNs can be used not only for prediction but also to extract relevant 

biological features from large datasets, and thereby provide mechanistic insights into complex 

biological processes. Here we elected to use embeddings because their capacity to represent 

discrete inputs into an interpretable latent continuous space makes them especially well-suited for 

codon analysis. Three main points can be made from the performance of CAMAPs trained to 

discriminate between source (i.e. MCC-flanking regions) and non-source sequences (i.e. regions 

randomly extracted from the transcriptome). First, the better prediction accuracy of CAMAPs 

trained with original codons rather than with shuffled synonyms supports the critical role of codon 

usage in MIP genesis (Fig. 4). Second, the interpretation of CAMAPs output and inner structure 

showed that while positions distant from as much as 54 codons from the MCCs influence the 

prediction (Fig. 4), positions directly adjacent to the MCCs disproportionately influence the output 

(Fig. 5). Third, synonymous codons have different effects on the prediction (Fig. 4,5). Thus, in 

codons adjacent to the MCCs, tyrosine codon TAT increased the probability of the sequence being 

classified as source, while TAC decreased it (Fig. 5A).  

 

The functional link between codon usage and MIP biogenesis was further strengthened by our in 

vitro analyses of SIINFEKL biogenesis. Indeed, we were able to modify presentation of the 

SIINFEKL MIP by substitution of synonymous codons in cDNA regions flanking SIINFEKL 

codons. The disconnect between the amount of SIINFEKL presented at the cell surface and 

translation efficiency further supports the importance of DRiP formation in MIP biogenesis. This 

experiment also highlighted co-translational degradation modulated by synonymous codon usage 

as a key mechanism regulating differential MIP presentation. Two analyses suggest that the role 



27 

 

of codon bias in MIP biogenesis is evolutionary conserved: (1) CAMAP preference rules learned 

on 9-mer MIPs presented by human B lymphocytes also applied to mouse CT26 colon carcinoma 

cells (Fig. 6) and (2) remained valid for presentation in mouse cells of an 8-mer MIP derived from 

a chicken protein (Fig. 7).  

 

Our study highlights synonymous codon usage as a fundamentally important but previously 

overlooked mechanism regulating MIP presentation. However, we have mostly limited our studies 

to the most common type of MIPs: 9-mers peptides coded by the canonical reading frame of 

annotated protein-coding genes (Trolle et al., 2016). Further analyses of large datasets will be 

needed to assess the full extent of codon usage on both classic MIPs, and MIPs derived from non-

canonical reading frames (Laumont et al., 2016). Likewise, further studies will be required in order 

to evaluate whether codon bias is biologically relevant to immunosurveillance against pathogens 

or transformed cells. A more practical implication of our work is the integration of both 

translational (codon usage) and post-translational events (e.g., MHC-binding affinity) in predictive 

algorithms may greatly enhance the predictive modeling of the immunopeptidome. This 

application would be particularly useful in the field of cancer immunotherapy where discovery of 

suitable target antigens remains a formidable challenge (Ehx and Perreault, 2019). 
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Methods 

Sequence extraction 

Sequences were extracted using the Python package pyGeno (Daouda et al., 2016) (version 1.2.8) 

with the human reference genome GRCh37.75. 

 

Synonymous codon shuffling 

For the KL analysis, each sequence was re-encoded by replacing each codon with itself or with a 

random synonym according to usage frequency calculated on the sequence dataset (positive or 

negative). This transformation ensures that codon usage biases specific to positive and negative 

datasets are conserved. For CAMAP analyses, the same transformation was applied to sequences 

of both datasets (positive or negative). In this case, codons were replaced according to the human 

mailto:claude.perreault@umontreal.ca
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transcriptome usage frequencies provided by pyGeno. These frequencies were calculated in silico 

on transcript coding sequences using the annotations provided by Ensembl for the human reference 

genome GRCh37.75. This transformation erases all codon specific features from each dataset, 

while retaining amino acid features. 

 

Statistics 

Correlations and Fisher exact test results were computed using the R software. AUCs were 

computed using the Python package Sklearn (Pedregosa et al., 2011). Transcript lengths for 

Supplementary Fig. S1 were extracted using pyGeno on annotations provided by Ensembl for the 

human reference genome GRCh37.75. 

 

CAMAP  sequence encoding and training 

CAMAPs were trained on sequences resulting from the concatenation of pre- and post-MCC 

regions. Before presenting sequences to our CAMAPs, we associated each codon to a unique 

number ranging from 1 to 64 (we reserved 0 to indicate a null value) and used this encoding to 

transform every sequence into a vector of integers representing codons. Neural networks were built 

using the Python package Mariana (Daouda, 2015) 

[https://www.github.com/tariqdaouda/Mariana]. The Embedding layer of Mariana was used to 

associate each label superior to 0 to a set of 2D trainable parameters; the 0 label represents a null 

(masking) embedding fixed at coordinates (0,0). As an output layer, we used a Softmax layer with 

two outputs (positive / negative). Because negative sequences are more numerous than positive 
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ones, we used an oversampling strategy during training. At each epoch, CAMAPs were randomly 

presented with the same number of positive and negative sequences. 

Each point in Fig 4A corresponds to a different CAMAP. We trained ten CAMAPs for each 

combination of conditions (context size × codon-shuffling × context availability), each one using 

a different random split of train/validation/test sets. We used an early stopping strategy on the 

validation sets to prevent over-fitting and reported average performances computed on test sets. 

To mask sequences either before or after the MCC, we masked either half with null value. For Fig 

4A, ten CAMAPs were trained for each condition (without pre-MCC context, without post-MCC 

context, with full context). All CAMAPs were trained using the same train/validation/test split. 

For each sequence in the test set we calculated the average prediction score given by CAMAP in 

each condition, and calculated the Pearson correlation using the R software. Densities were 

calculated on all points and drawn using ggplot2. Only a random subset of the points is represented 

in the figures to limit their size. All CAMAPs in this work share the same architecture 

(Supplementary Fig. S5), number of parameters and hyper-parameter values: learning rate: 0.001; 

mini-batch size: 64; embedding dimensions: 2; linear output without offset on the embedding 

layer; Softmax non-linearity without offset on the output layer.  

 

Codon preferences 

Preferences were obtained by feeding the CAMAP embedding vectors where all codons values 

were set to null (coordinates (0,0)), except for a single position that received a non-null codon 

label. 
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Analysis of enriched out-of-frame codons  

Codon counts in both alternative reading frames, +1 and -1, were obtained in the pre- and post-

MCC contexts in source and non-source sequence datasets. The MCC context length was set to 54 

codons on both sides. Positional odds ratio between source and non-source out-of-frame codon 

counts were calculated for all 64 codons, at each of the 106 positions (the frameshift caused a loss 

of the 2 endmost codons). A unidirectional Fisher exact test was performed on each codon at each 

position using the R software with options « alternative = "greater", or = 1.1 ». The null hypothesis 

was that the codonôs odds ratio is equal or smaller than 1.1, which aims at correcting for false 

positive hits featuring high counts and relatively small odds ratios. Graphs were generated using 

the Altair interactive visualization package in Python. 

 

Folding analysis 

RNA sequence folding was performed using the MC-Flashfold program (Dallaire and Major, 

2016). We were most interested in the energy contribution of the context closest to the MCC, 

which prompted us to set the context lengths at 30 codons (90 nucleotides). This shorter length 

(compared to 54) was also driven by the fact that RNA folding usually performs better with a more 

targeted selection choice. The MCC was included as well, yielding a total length of 207 nucleotides 

per folded sequence. Non-source counts were divided by 5 to get equivalent numbers of values in 

each bin. 
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Predictions on source-transcripts from murine CT26  

Data from RNA-sequencing and MIP identification on murine CT26 colon carcinoma cells were 

extracted from Laumont et al., (2018). Only 9 amino acid-long MIP deriving from the canonical 

proteome and with a rank score Ò1% for either H2-Kd or H2-Dd (NetMHCCons-1.1) were 

included in this analysis. 

 

In order to directly predict MIP presentation from CT26 cells RNA sequencing reads, which were 

only 75 nucleotides long, we trained an CAMAP using a dataset of positive and negative B-LCL 

sequences with a context size of 24 nucleotides (pre-context and post-context = 24 nucleotides 

each, MCC = 27 nucleotides, total = 75 nucleotides). Here again, CAMAP was trained using 

sequences generated by the concatenation of pre- and post-MCC regions (i.e. excluding the MCC). 

Then, this CAMAP (i.e. trained on human B-LCL sequences) was used to derive prediction scores 

on reads originating from CT26 cells, from which the middle 27 nucleotides (positions 25 to 51, 

corresponding to the MCC) had been removed. Positive sequences were defined as reads encoding 

for a MIP, detected by mass spectrometry, in their corresponding MCC region (position 25 to 51). 

As different reads can translate into the same amino-acid sequence, the average prediction score 

of reads associated to a given MIP are shown in Fig. 6B and D.  

 

iTR-OVA design 

An inducible translation reporter was generated by flanking the truncated chicken ovalbumin 

(OVA) cDNA (amino acids 144-386) with EGFP-P2A (in 5ô) and P2A-Ametrine (in 3ô) cDNA 

sequences. MCC-flanking contexts for the EP and RP construct were synthesized as gBlocks 

(purchased from Integrated DNA Technologies). The fragments were amplified by PCR and joined 
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by Gibson assembly under a doxycycline-inducible Tet-ON promoter in a pCW backbone. 

Synthetic variants of the OVA coding sequence were generated in silico by varying synonymous 

codon usage in the MIP context regions (i.e. 162 nucleotides pre- and post-MCC). Importantly, 

the amino acid sequence was preserved between the different variants; only nucleotide sequences 

in the MIP context differed. The sequences with the highest (EP) and the lowest (RP) prediction 

scores were selected for further in vitro validation and swapped into the iTR-OVA plasmid by 

Gibson assembly (Gibson et al., 2009). OVA-EP and OVA-RP sequences can be found in 

Supplementary Table S2. 

 

Cell lines 

Raw-Kb (Bell et al., 2013), Raw-Kb OVA-WT, Raw-Kb OVA-EP and Raw-Kb OVA-RP cell lines 

were cultured in DMEM supplemented with 10% Fetal Bovine Serum (FBS), Penicilin (100 

units/ml), and streptomycin (100mg/ml). B3Z cells (Karttunen et al., 1992) were maintained in 

RPMI medium supplemented with 5% FBS, penicillin (100 units/ml), and streptomycin 

(100mg/ml). 

 

Stable cell line generation 

Lentiviral particles were produced from HEK293T cells by co-transfection of iTR-OVA WT, EP 

or RP along with pMD2-VSVG, pMDLg/pRRE and pRSV-REV plasmids. Viral supernatants 

were used for Raw-Kb transduction. Raw-Kb OVA-WT, Raw-Kb OVA-EP were sorted on 

Ametrine and GFP double positive population after 24h of doxycycline treatment (1 mg/ml). 
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Antigen presentation assay 

Raw-Kb OVA-EP, OVA-RP and OVA-WT cells were plated at a density of 250,000 cells/well in 

24 well-plates 24h prior to doxycycline treatment (1 mg/ml). After the corresponding treatment 

duration, cells were harvested and fixed using PFA 1% for 10 minutes at room temperature and 

washed using DMEM 10% FBS. Raw-Kb were then co-cultured (37°C, 5% CO2) in triplicates with 

the CD8 T cell hybridoma cell line B3Z cells at a 3:2 ratio for 16h (7.5 x 105 B3Z and 5 x 105 

Raw-Kb) in 96 well-plates. Cells were lysed for 20 minutes at room temperature using 50 µl/well 

of lysis solution (25mM Tris-Base, 0.2 mM CDTA, 10% glycerol, 0.5% Triton X-100, 0.3mM 

DTT; pH 7.8). 170 µl/well CPRG buffer was added (0.15mM chlorophenol red-ɓ-d-

galactopyranoside (Roche), 50mM Na2HPO4Å7H20, 35mM NaH2PO4ÅH20, 9mM KCl, 0.9mM 

MgSO4Å7H2O). ɓ-galactosidase activity was measured at 575 nm using SpectraMax® 190 

Microplate Reader (Molecular Devices). In parallel, cells were analyzed by flow cytometry using 

a BD FACS CantoII for eGFP and Ametrine fluorescence.  

  

Data visualization and availability 

All figures were generated using Rôs package ggplot2 and assembled using Adobe Illustrator. 

Source code for pyGeno and Mariana are freely available (https://github.com/tariqdaouda/pyGeno 

and https://github.com/tariqdaouda/Mariana). Human B-LCL RNA-Seq data can be accessed on 

the NCBI Bioproject database (http://www.ncbi.nlm.nih.gov/bioproject/; accession 

PRJNA286122), while murine CT26 RNA-Seq data can be accessed under the GEO accession 

number GSE111092. Mass spectrometry data can be found on the ProteomeXchange Consortium 

via the PRIDE partner repository (human B-LCL: PXD004023 and murine CT26: PXD009065 

http://github.com/tariqdaouda/pyGeno
https://github.com/tariqdaouda/Mariana
http://www.ncbi.nlm.nih.gov/bioproject/
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and 10.6019/PXD009065). All other data and source codes supporting the findings of this study 

are available from the corresponding authors upon reasonable request. 

Supplementary information is available in the online version of the paper.  

 

 

  



37 

 

 
References 

Abelin, J.G., Keskin, D.B., Sarkizova, S., Hartigan, C.R., Zhang, W., Sidney, J., Stevens, J., Lane, 

W., Zhang, G.L., Eisenhaure, T.M., et al. (2017). Mass Spectrometry Profiling of HLA-Associated 

Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 46, 315ï

326. 

Antón, L.C., and Yewdell, J.W. (2014). Translating DRiPs: MHC class I immunosurveillance of 

pathogens and tumors. J. Leukoc. Biol. 95, 551ï562. 

Atkins, J.F., Loughran, G., Bhatt, P.R., Firth, A.E., and Baranov, P.V. (2016). Ribosomal 

frameshifting and transcriptional slippage: From genetic steganography and cryptography to 

adventitious use. Nucleic Acids Res. 44, 7007ï7078. 

Barry, J.K., and Miller, W.A. (2002). A ī1 ribosomal frameshift element that requires base pairing 

across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral 

RNA. Proc. Natl. Acad. Sci. 99, 11133ï11138. 

Bassani-Sternberg, M., and Gfeller, D. (2016). Unsupervised HLA Peptidome Deconvolution 

Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in PeptideïHLA 

Interactions. J. Immunol. 197, 2492ï2499. 

Bell, C., English, L., Boulais, J., Chemali, M., Caron-Lizotte, O., Desjardins, M., and Thibault, P. 

(2013). Quantitative Proteomics Reveals the Induction of Mitophagy in Tumor Necrosis Factor-

Ŭ-activated (TNFŬ) Macrophages. Mol. Cell. Proteomics MCP 12, 2394ï2407. 

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A Neural Probabilistic Language 

Model. J. Mach. Learn. Res. 3, 1137ï1155. 

Cannarozzi, G., Schraudolph, N.N., Faty, M., von Rohr, P., Friberg, M.T., Roth, A.C., Gonnet, P., 

Gonnet, G., and Barral, Y. (2010). A Role for Codon Order in Translation Dynamics. Cell 141, 

355ï367. 

Capietto, A.-H., Jhunjhunwala, S., and Delamarre, L. (2017). Characterizing neoantigens for 

personalized cancer immunotherapy. Curr. Opin. Immunol. 46, 58ï65. 

Caron, E., Vincent, K., Fortier, M.-H., Laverdure, J.-P., Bramoullé, A., Hardy, M.-P., Voisin, G., 

Roux, P.P., Lemieux, S., Thibault, P., et al. (2011). The MHC I immunopeptidome conveys to the 

cell surface an integrative view of cellular regulation. Mol. Syst. Biol. 7, 533. 

Caron, E., Espona, L., Kowalewski, D.J., Schuster, H., Ternette, N., Alpízar, A., Schittenhelm, 

R.B., Ramarathinam, S.H., Lindestam Arlehamn, C.S., Chiek Koh, C., et al. (2015). An open-

source computational and data resource to analyze digital maps of immunopeptidomes. ELife 4, 

e07661. 



38 

 

Cinelli, R.A.G., Ferrari, A., Pellegrini, V., Tyagi, M., Giacca, M., and Beltram, F. (2000). The 

Enhanced Green Fluorescent Protein as a Tool for the Analysis of Protein Dynamics and 

Localization: Local Fluorescence Study at the Single-molecule Level. Photochem. Photobiol. 71, 

771ï776. 

Clemente-Casares, X., Blanco, J., Ambalavanan, P., Yamanouchi, J., Singha, S., Fandos, C., Tsai, 

S., Wang, J., Garabatos, N., Izquierdo, C., et al. (2016). Expanding antigen-specific regulatory 

networks to treat autoimmunity. Nature 530, 434ï440. 

Dallaire, P., and Major, F. (2016). Exploring Alternative RNA Structure Sets Using MC-Flashfold 

and db2cm. Methods Mol. Biol. Clifton NJ 1490, 237ï251. 

Daouda, T. (2015). Mariana: The Cutest Deep learning Framework. 

Daouda, T., Perreault, C., and Lemieux, S. (2016). pyGeno: A Python package for precision 

medicine and proteogenomics. F1000Research 5, 381. 

Davis, M.M., Krogsgaard, M., Huse, M., Huppa, J., Lillemeier, B.F., and Li, Q. (2007). T Cells as 

a Self-Referential, Sensory Organ. Annu. Rev. Immunol. 25, 681ï695. 

Dinman, J.D. (1995). Ribosomal frameshifting in yeast viruses. Yeast Chichester Engl. 11, 1115ï

1127. 

Dolan, B.P., Bennink, J.R., and Yewdell, J.W. (2011). Translating DRiPs: progress in 

understanding viral and cellular sources of MHC class I peptide ligands. Cell. Mol. Life Sci. 68, 

1481ï1489. 

Ehx, G., and Perreault, C. (2019). Discovery and characterization of actionable tumor antigens. 

Genome Med. 11, 29. 

Faure, G., Ogurtsov, A.Y., Shabalina, S.A., and Koonin, E.V. (2017). Adaptation of mRNA 

structure to control protein folding. RNA Biol. 14, 1649ï1654. 

Fleri, W., Paul, S., Dhanda, S.K., Mahajan, S., Xu, X., Peters, B., and Sette, A. (2017). The 

Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine 

Design. Front. Immunol. 8. 

Frenkel-Morgenstern, M., Danon, T., Christian, T., Igarashi, T., Cohen, L., Hou, Y.-M., and 

Jensen, L.J. (2012). Genes adopt non-optimal codon usage to generate cell cycle-dependent 

oscillations in protein levels. Mol. Syst. Biol. 8, 572. 

Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison Iii, C.A., and Smith, H.O. (2009). 

Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343ï

345. 

Granados, D.P., Laumont, C.M., Thibault, P., and Perreault, C. (2015). The nature of self for T 

cellsða systems-level perspective. Curr. Opin. Immunol. 34, 1ï8. 



39 

 

Granados, D.P., Rodenbrock, A., Laverdure, J.-P., Côté, C., Caron-Lizotte, O., Carli, C., Pearson, 

H., Janelle, V., Durette, C., Bonneil, E., et al. (2016). Proteogenomic-based discovery of minor 

histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. 

Leukemia 30, 1344ï1354. 

Gurvich, O.L., Baranov, P.V., Zhou, J., Hammer, A.W., Gesteland, R.F., and Atkins, J.F. (2003). 

Sequences that direct significant levels of frameshifting are frequent in coding regions of 

Escherichia coli. EMBO J. 22, 5941ï5950. 

Hoof, I., Baarle, D. van, Hildebrand, W.H., and Keĸmir, C. (2012). Proteome Sampling by the 

HLA Class I Antigen Processing Pathway. PLOS Comput. Biol. 8, e1002517. 

Karousis, E.D., Nasif, S., and Mühlemann, O. (2016). Nonsense-mediated mRNA decay: novel 

mechanistic insights and biological impact. Wiley Interdiscip. Rev. RNA 7, 661ï682. 

Karttunen, J., Sanderson, S., and Shastri, N. (1992). Detection of rare antigen-presenting cells by 

the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. 

Natl. Acad. Sci. U. S. A. 89, 6020ï6024. 

Kim, J.H., Lee, S.-R., Li, L.-H., Park, H.-J., Park, J.-H., Lee, K.Y., Kim, M.-K., Shin, B.A., and 

Choi, S.-Y. (2011). High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-

1 in Human Cell Lines, Zebrafish and Mice. PLOS ONE 6, e18556. 

Laumont, C.M., and Perreault, C. (2018). Exploiting non-canonical translation to identify new 

targets for T cell-based cancer immunotherapy. Cell. Mol. Life Sci. CMLS 75, 607ï621. 

Laumont, C.M., Daouda, T., Laverdure, J.-P., Bonneil, É., Caron-Lizotte, O., Hardy, M.-P., 

Granados, D.P., Durette, C., Lemieux, S., Thibault, P., et al. (2016). Global proteogenomic 

analysis of human MHC class I-associated peptides derived from non-canonical reading frames. 

Nat. Commun. 7, 10238. 

Laumont, C.M., Vincent, K., Hesnard, L., Audemard, É., Bonneil, É., Laverdure, J.-P., Gendron, 

P., Courcelles, M., Hardy, M.-P., Côté, C., et al. (2018). Noncoding regions are the main source 

of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516. 

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436ï444. 

Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., and Nielsen, M. (2008). 

NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I 

affinities for peptides of length 8ï11. Nucleic Acids Res. 36, W509ïW512. 

Nielsen, M., and Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC 

class I molecules integrating information from multiple receptor and peptide length datasets. 

Genome Med. 8. 

Nielsen, M., Lundegaard, C., Lund, O., and Keĸmir, C. (2005). The role of the proteasome in 

generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal 

cleavage. Immunogenetics 57, 33ï41. 



40 

 

Pearson, H., Daouda, T., Granados, D.P., Durette, C., Bonneil, E., Courcelles, M., Rodenbrock, 

A., Laverdure, J.-P., Côté, C., Mader, S., et al. (2016). MHC class Iïassociated peptides derive 

from selective regions of the human genome. J. Clin. Invest. 126, 4690ï4701. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. 

J. Mach. Learn. Res. 12, 2825ï2830. 

Plotkin, J.B., and Kudla, G. (2011). Synonymous but not the same: the causes and consequences 

of codon bias. Nat. Rev. Genet. 12, 32ï42. 

Schumacher, T.N., and Schreiber, R.D. (2015). Neoantigens in cancer immunotherapy. Science 

348, 69ï74. 

Sharma, V., Prère, M.-F., Canal, I., Firth, A.E., Atkins, J.F., Baranov, P.V., and Fayet, O. (2014). 

Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in 

Escherichia coli. Nucleic Acids Res. 42, 7210ï7225. 

Shastri, N., and Gonzalez, F. (1993). Endogenous generation and presentation of the ovalbumin 

peptide/Kb complex to T cells. J. Immunol. Baltim. Md 1950 150, 2724ï2736. 

Shcherbakova, D.M., Hink, M.A., Joosen, L., Gadella, T.W.J., and Verkhusha, V.V. (2012). An 

orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and 

FRET imaging. J. Am. Chem. Soc. 134, 7913ï7923. 

Shimbara, N., Ogawa, K., Hidaka, Y., Nakajima, H., Yamasaki, N., Niwa, S., Tanahashi, N., and 

Tanaka, K. (1998). Contribution of Proline Residue for Efficient Production of MHC Class I 

Ligands by Proteasomes. J. Biol. Chem. 273, 23062ï23071. 

Trolle, T., McMurtrey, C.P., Sidney, J., Bardet, W., Osborn, S.C., Kaever, T., Sette, A., 

Hildebrand, W.H., Nielsen, M., and Peters, B. (2016). The Length Distribution of Class Iï

Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC AlleleïSpecific 

Binding Preference. J. Immunol. 196, 1480ï1487. 

Tse, H., Cai, J.J., Tsoi, H.-W., Lam, E.P., and Yuen, K.-Y. (2010). Natural selection retains 

overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes. BMC 

Genomics 11, 491. 

Wang, X., Xuan, Y., Han, Y., Ding, X., Ye, K., Yang, F., Gao, P., Goff, S.P., and Gao, G. (2019). 

Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal 

Frameshifting. Cell 176, 625-635.e14. 

Yadav, M., and Delamarre, L. (2016). Outsourcing the immune response to cancer. Science 352, 

1275ï1276. 

Yadav, M., Jhunjhunwala, S., Phung, Q.T., Lupardus, P., Tanguay, J., Bumbaca, S., Franci, C., 

Cheung, T.K., Fritsche, J., Weinschenk, T., et al. (2014). Predicting immunogenic tumour 

mutations by combining mass spectrometry and exome sequencing. Nature 515, 572ï576. 



41 

 

Yewdell, J.W., Antón, L.C., and Bennink, J.R. (1996). Defective ribosomal products (DRiPs): a 

major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823ï1826. 

Yu, C.-H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., Sachs, M.S., and Liu, Y. (2015). Codon usage 

influences the local rate of translation elongation to regulate co-translational protein folding. Mol. 

Cell 59, 744ï754. 

 

  



42 

 

Supplemental Information 
 

Supplementary Figures 

 

Supplementary Figure S1. Percentage of transcript ineligibility as a function of context size. Transcript 

length corresponds to C x 2 + 27, where C is the context size in nucleotides and 27 the length of the MCCs. 

Related to Figure 1. 
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Supplementary Figure S2. Distribution of alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, 

glycine, histidine, isoleucine, lysine, leucine, methionine and asparagine codons in positive and negative 

datasets. Spikes and drops are represented in blue. Related to Figure 2. 
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Supplementary Figure S3. Distribution of proline, glutamine, arginine, serine, threonine, valine, 

tryptophan and tyrosine codons in positive and negative datasets. Spikes and drops are represented in blue. 

Related to Figure 2. 

 


