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Summary

Major histocompatibility complexNIHC)-I-associated peptides (MIP®€gulae the development
and function of CD8 T cells, and represent the ntangets of cancer immunosurveillance.
Importantly, MIPs originate fronspecific regions of the genomé&Vhile all prokeins contain
peptide sequences that coplatentiallybind to MHGI molecules, most of thesequencesever
become MIPsHere, ve report that MIP biogenesisrisgulatedat the translational levély codon
usage in the mRNA regions flanking Mt®ding codondJsingdifferentbioinformatics methods,
including artificial neiral networks, wanalyzedarge datasets of transcrigtsat did, or did not,
erncoce MIPs. We found thatertainsynonymous codahaddisparatesffects on MIP biogenesis
Notably, the rules derived from analyses of huriwiRs also applied to mouddIPs. We further
validated our in silico resultsusing anin vitro quantitativeassg based on the model MIP
SIINFEKL (OVA2s7.264). Following transludion with inducible GFROVA-Ametrine construg
swappingof synonymous codanin the regions flanking the SIINEEKL codonsmodulated
SIINFEKL presentation.We concludethat codon usage iMIP-flanking sequencess an

evolutionary conservekgulatorof MIP biogenesis

Keywords: immunopeptidome, codon usage, Mii@Gssociated peptide@MIPs), Defective

ribosomal prodcts (DRIiPs), Artificial Neural Networks



Introduction

In jawed vertebrates)lanucleated cells present at their surfacgor histocompatibility complex
(MHC) class tassociated peptides (MIRswhich are collectively referred to as the
immunopeptidoméCaron et al., 2015; Granados et al., 20R&cognition of abnormal MIPs is
essential to thelimination of infected ancheoplastic cell§Schumacher and Schreiber, 2015)
Furthermore, alf MIPsplay a centralolein shaping the adaptive immune sysiémeyorchestrate
the developmerof CD8 T cells in the thymus, as well asitteurvival and activation in peripheral
organs(Davis et al., 2007)Given the pervasive role of the immunopeptidome, systenes
understading of its genesis and moléar composition is a central issue in immunobiol@sron

et al., 2011)

High-throughput mass spectrometry analybase revealedhat MIPs originatefrom selected
regions of the gammeand thathe immunopeptidome is not a random excerpt of the transcriptome
or the proteoméGranados et al., 2019hdeed, proteogenomic analyse26f270 MPs isolated
from B lymphocytes of 18 individuals showed tHHt% of expressed protecoding genes
generated no MIPs, while 59% of genes generated up to 64 MIP$Rgarson et al., 2016)he
notion that theMIP repertoirepresents only ansall fraction of the protektoding genome
monitored by the immune systenmelys the question: what are the rules governing the molecular
composition of the immunopeptidom&zlatedly is it possible to predict which parts of the
proteome wil be presentedypMHC-I molecule® These questions are particularly relevant to the
identification of immunogeniantigens that cahe targetedor immunotheraputic treatmenof
cancer a well asautoimmune diseasesdeed immunizationagainscancerspecificantigenan

elicit protective anttumor responsesvhile nanoparticles coated with sgléptides can be used to



treat autonmune conditiongClementeCasares et al., 2016; Fleri et al., 2017; Laumont et al.,

2018; Schumacher and Schreiber, 2015; Yadav et al., 2014)

The fact that only a specific part ofettyenome generates MIPs suggests thateéhegis of the
immunop@tidomecan be conceptualized &g main eventya) thebiogenesigor preselection)
of MIPscandidatesand (b)a subsequent filtering stéproughthebindingof the candidatet® the
availableMHC-1 moleculesRules that regulate the second eveat thebinding of MIPs to MHC
| moleculeshave been wettharacterizedy artificial neural network6ANN) (BassaniSternberg
and Gfdler, 2016; Nielsen and Andreatta, 201dpwever, it is currently impossible to prediceé
first event that is,which peptides will ultimately reach MHCmolecules folbwing a multistep
processing in the cytosol and endoplasmic reticullihe @nsideation of preferential sites of
proteasome cleavadms proveruseful to enrich for MIP candidatdsut remains insufficierfor
MIP prediction, mostly because pffohibitive false discovery ratéfbelin et al.,2017; Capietto

et al., 2017; Nielsen et al., 2005)

Most efforts at modeling MIP processing have focusepasttranslational events (e.g., cleavage
by proteases) and their regulation thye amino acid sequence of MIPs and of their flanking
residuestfpically 10mers at the NandC-termini). However,a large body of evidence suggests
thatMIPs are produced during translation or a few minutes after(@antthn and Yewdell, 2014)
Indeed manyMIPs derive fran defectiveribosomalproducts (DRiPs)that is polypeptides that
fail to achieve a stablend funcional conformation during translation arnldatareconsequently
rapidly degradedWhile the genetic codeés redundant,i.e. many (synonymous) codons are

translated into the same amino acitlesesynonymous codons are not used in equal frequencies.



This phenomenon is termed codosage bias. Notahlythe precision ancefficiency of protein
synthesis heavily depends on codon usagewheh codons are esl at specificpositions in the
MRNA sequence)Canrarozzi et al., 2010; Plotkin and Kudla, 201h)our effort to decipher the
rules of MIP biogenesisye analyzedhe codon usagef transcriptdha encodeor do not encode

for MIPs. We used several bioinformatics tools includiddiNs for their abilty to provide a
powerful and flexible array of methods to model +ioear interactions in large datasét®Cun

et al., 2015) Although historicallyANNs have been usedsentially for theicapacityto make
predictions, the fact that a trainA8IN is a deterministic mathemedal function trained to answer
specific questions support their use as powerful exploratory tobéefore, v developed an
artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP
presentation solely from mRNgequences flanking the MAP coding regiovwe found that, in
human cells, the distribution efyfnonymous codons in RNA sequences flanking MIP codons was
different from their distribution in the glob&anscriptomeFurthermore CAMAPS trained on
human samples could predict Mif@nerating sequences in both human and mice samples. Finally,
we validaed in an in vitro model that modulation of synonymous codon usage in the regions

flanking MIP sequencesggiificantly altered protein synthesis and MIP biogenesis



Results

Low affinity c odons are enriched in MIP-source transcripts

Our dataset was constted with MIPs presented 88 HLA class | alleles on B lymphocge

from 18 subjectdGranados et al.,, 2016; Pearson et al., 20E6m theentire dataset, we
extractedhe 1965 9-merMIPswi t h a predi ct ed NMBOGMforianlehstng af |
one of t he -lsallotypegacdordisg toMdtMEHC3.4 (Lundegaard et al., 2008)Ve

then used pyGenf(Daoudaet al., 2016)0 extractthe sequenceof transcripts codindor these
19,656 MIPswhich constituted oupositive dataset. We next created a negative (or decoy) dataset
by randomly selecting 98,290 ndvil P 9-mers from transcripts thagjeneréed no MIPsandalso
extracted their coding sequences using pyGafereasoned that a transcigpibuld be considered

asa genuingoositive ornegative (regarding MIP biogenesis) only if it was expressdéueircells

that wee being studiedWe therefore excluded from the datasets all transcripts whose expression
was barely detectable (below theé"g8ercentile in terms of FPKM)The resulting positive and
negative datasets therefore containedcdm®onical reading frae of non-redundanMIP-source

transcriptgn = 19,656) andonsource transcripté =98,290), respectivelfFig. 1)

Codon usagebias regulatedranslationdynamics, and thereby affects translatiefficiency,
accuracy, angbroteinfolding (FrenketMorgenstern et al., 2012ru et al, 2015) To evaluate
whether codofanticodon affinity might influence MIP biogenesige compared the globasage

of high affinity codons as defined byrenketMorgenstern et a(2012) between the 19,63481P-
source transcripts and the 98,290 +somirce transcripisiranscript sequences were separated
along their lengths in 100 bins of equal sieach bin representing one percentiletlon length

Foreachbin, we then calculated the frequencyhogh affinity codonsfor souce and nosfsource



mRNA transcripts
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Figure 1. Construction of the dataset.Transcripts expressed in B cells from 18 subjects were considered
as source or nesource transcripts gending on their match witat leastone MIP. The entire length of
source and nesource transcripts (from start to stomlon) was used for analyses of codon affinity (Fig.
2A). For other analyses of codon usage (F&).Flg. 3 to 6), we focused our atteon on mMRNA sequences
more closely adjacent to the nine MiBding codons (MCCs), i.e. up to 162 nucleotides on eacloside
MCCs.

transcriptgFig. 2A). The two resulting distributiondiffered significantly at every positiofp < 1

x 101 Fisher exat test).The salient feature was thIP-source transcripts contained a lower
proportion of high affinity codons thanon-source transcripts. The discrepancy between the two
gene sets was part i c-sideafrtHe ynRNAS, nes the el 25%wostheon t h e
MRNA sequeoes. Usage of high affinity codonxreasedontinuouslywhen progressing from

t h e to%hé3 -&ndof MIP-source transcriptdbut never reachetthe frequency found imon

source transcriptgFig. 2A). The relatively low frequecy of high affinity codonsn MIP-source
transcriptsprovides a plausible mechanislick betweentwo seemingly unrelatedbservatios;

one, thatcell cycleregulated geneare enriched imow affinity codons(FrenketMorgenstern et

al., 2012)yandtwo, that transcriptenriched iflow affinity codonsare a preferential source of MIPs

(Pearson et al., 2016)
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Distribution of synonymous codons

For the next series ofnalyses,we reasoned that translational and-tcanslational events
happening in the direct vicinity of MCC could have a disproportionate impact on MIP presentati
We thereforefocused our attention on mMRNA sequencese closelyadjacent tahenine MIP-
coding codongMCCs). We limited our analyse®f flanking sequences to 162 nucleotid64
codons)n each sidef MCCs, because longer lengths would entail the exclusion of a significant
proportion of transcript§SupplementaryFig. S1). Because we were searching featuresthat
might influence MIP generation rather than binding of MIP to MHC eleeted to analyzthe

MIP context rathethanMCCs per seWethereforeeemoveadhe 9 central codons (i.e., the MCCs)
from the positve and negatie datasets and kept only tNECC-flanking sequence@=ig. 1) To
investigatehe relative importance of codon vs. amino acid usaf#liP biogenesis, weompared

the codon and amino adidstributionsin the positive and negative datasgtsg KullbackLeibler
divergence(see below) A higher divergence for codon distributions than for amino acid
distributiors would indicatethat codonvariations are noéntirely accounted for bgmino acid
variations To address this question, we deristiffled positive and negative datasets in which
the original codons were replaced by synonymous codons according to their usage fraguency

the datasets.

We thendefined theprobability of having codorc at positioni as a function of the number of

occurrencesof c at positioni, divided by the total number otcurrencesf that same codon



Here Q is a probability, N is a number obccurrencesc is a codony is a class (pgtive or
negative), sindicates if codons have been randomi@ege or false)i is apositionin sequence.

Forthe ramainderof the text we will use the following abbreviations:

DL Q U R Q
0O U5 i Q
0°YQ 0 i Q
oY'Q 0y i 0

We then used the Kullbadkeibler (KL) divergence tocomputehow well 0 distributions

approximate’O distributions and "Ydistributions approximat® "Ydistributions

The KL divergencavas definedas

v v s 0 Q
0 DA | £~
2 50
Its value can be either positive@ra null value indicating that the twosttibutions are identical.
KL divergence is not a metric, as it is neither symmetric nor does it satisfy the triangle inequality.

It is neverthelesan accurateand most commoway of comparing two probability distributions.

The random shuffling causesyacodon specific features be shared among synonyms, causing
every codon distribution teeflectits amino acid distributianf synonymous codonand amino
acid distributions werequivalent, the onlpbservedsariationswould reflect some increase the
variance arising from $ifting 20 amino aciddistributionsinto 61 codondistributions.Therefore,

values forO O would be almost equal to values for ‘O™ "Y, andcodonswould
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cluster alonghediagonal.However, heonly codons on the diagonal are ATG(BHdTGG(W)
that haveno synonyms and TAT(Y), TAC(Y) (Fig. 2B) that have very similadistributions
(Supplementaryig. S2 and S3). This finding shows thatodon distributionsare different from
amino aail distributionsMoreover variations at the codon lewskre higherthan variatiors at the
amino acid levefor 47 codons(77% above the diagonal in FigB2 Codonsalsodid not cluster
by amino acids along tH®@ ‘O s diagona) which shows that thelevel of divergencevaries
among synonymous codanghis finding indicatesthat the brealth of synonymous codon
variations anrot be explained by common amino acid featuhesother wordsthe varations
observed when comparing positive arehative dataset the codon levatanrot be explained
by variationsat the amino acid leveTheseresultssuggesthat codorusagebias in MIRflanking

regionscouldplayarole in MIP biogenesis.

Source sequencesare less stable andnriched in out-of-frame stop codons
Ribosomaframeshifting, frequently followed by encounter of an-aiitframe stop codon (OSC),
is an important source of DRiPs and Mi@ston and Yewdell, 2014; Laumont and Perreault,
2018; Laumont et al., 2016)Ve therefore evaluated codon enrichmenglternative reading
frames (ARF¥flanking MIP codong162 nucleotidespstream and downstreixr&Enrichedcodons
were defined as having adds ratio significantly greater than 1pl<(0.05, onesided Fisher exac
test)in the positive vs. negative datasstrikingly, astrongenrichment irOSCswas detected for
ARF -1. More than any other codon, TGA and TAA stop codons were significantly enicligd
and 77% of positionsespectivelywhile the TAGstop codorwas the eighth most enricheddon
(Fig. 3A, top paneandSupplementaryig, $4). By contrastARF+1 showedh smaller enrichment

in OSCs(Fig. 3A, bottom panel)

11
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Numerous studis have reported cases in which gene regulation occurs throdghameshift
mechanism, a weltharacterized phenomenongrokaryotic and viral setting®8arry and Miller,

2002; Gurvich et al., 2003; Sharma et al., 2030, it was shown that codon choice and GC
content correlate with the presence of OfIG® et al., 2010)nterestingly, whileve foundOSCs

both pre and postMCC, they wee particularly enriched in the peStCC context in the ARF1

(Fig. 3B). Thissuggests that premature translation termination following a ribosomal frameshift

promotes the generatiai DRiPs and MIPgYewdell et al., 1996)

RNA instability favors protein misfaling andDRIiP formation(Faure et al., 2017Sincethe
folding landscape dRNA sequences relies heavily on nucleotide comjmwsiwe performed RNA
folding analysis on botpositiveandnegativedatasetsMIP-flanking ssquences clearly exhibited
higher minimum free energy and therefore less thermodynamically stable structthran
sequences in the negative datdsed. 3C). In line with thisobservationMIP-flanking sequences
showed a reduced GC contéBtipplementaryableSl), a feature associated with decreased RNA
stability. Taken together, these results show that RNgueaces flanking MCCs display two
features associated with DRIP formatitimey are enriched in OSCs and are less stable than the

global transcrigime.

CAMAP results link codon usage to MIP presentation

To further assess the importancecotion usage in Ml biogenesiswe reasoned that if codons
bear important informatiothat is operative at the translational rather than thetpmsstlational
level, then: ()ANNstrained to identifyM CC-flanking regions should consistently perform better

when trained orRNA sequenceshan onamino acid sequenceand (i) synonymous codons

13



should have different effects on the predictiba test thespredictionswe designed threelayer
ANN called Codon Arrangement MAP Predictor (CAMA®picted inSupplementaryig. S5A,
using the machine learning framework Mariana (Daouda, 2015)
[https:/www.github.om/tarigdaouda/Mariaga The first (input) layer receivedeither MCC-
flanking regiongrom the positive dataset sequences of the same lengihtained in the negative
datasetFig. 1,Supplementaryig. S5). The second layer vgaa codon embedding laygmilar to

that introduced foa neural language mod@engio et al., 2003Embedding is a technique used

in natural language processing to encdideree words, anchas been shown to greatly improve
performance(LeCun et al., 2015)n this technique, the user defines a fixed number of dimensions
in which words should be encoded. ¥vithe training starts, each word receives a rangsmtor-
valued position (its embedding)n that space. The network théeratively adjusts the wosd
embeddingvectorsduring the training phase and arranges them in a way dphamizesthe
classificaton task.Notably,embeddings have been showrrépresent semantic spaces in which
words of similar meanings are arranged close to each (tb€un et al., 2015)In thepresent
work, we treated codons as wor@ach odon received a set of random 2D coordinates that were
subsequently optimized during traininhe third(output)layerdeliveredthe probability that the

input sequenceras an MCC-flanking region(rather tha a sequence from the negative dataset)

To first evaluate the consistency of our findings, we tested the performance of this architecture on
several datasets corresponding to diffedengths of flanking sequenceso(text szes) The
maximum contextige that we useavas 162nucleotideg54 calons) on each side of the ME@

the positive dataset and of rMCCs in the negative datasdiecauséonger lengthsvould have

excludedmorethan25% of thetranscripts from our datasetSypplementaryig. S1). For each

14



context size, we randombgivided the positive and negativdataset into three subsetg4l) the
training subsets containing 60% of the positive aedative transcripiq2) the test and3)
validation subsetgach contaimg 20% of the positie and negative transcript§/e used the
transcriptsof the training subsets to train our models and usedalationsubset to implement
an early stopping stiegy and report the results obtained on the test subEbesvalues for the
area under theeceiver opgator characteristic curvé&RQC/AUC) reported here were all obtained
on thetestsubsed, i.e. examples that have not been used for trainirepdy stoppingstrategy
These results show that increasihg ttontext size had podtive effect onthe performances,
suggestinghatMCC-flanking regiongegulate MIP presentation at different ranfjeg. 4A, left).

Performances on the training avalidationsubsets arpresented irsupplementaryig. Sb.

To test the hypothesis that codons bearartgmt information(regarding MIP presentatipthat
amincacids do natwe shuffled synonymous codons according to their frequencies in the human
transcriptome This trangormation erasesodonspecific information and causes every codon
distribution to eflect that of its amino acidVe applied thesametransformatiorto the positive

and negative datasetand trained a new set of networks omestghtransformed dataset®Ve
observed thatnedictionswere consistently better wheDAMAPS receivel the orighal codors

(Fig. 4A, left) than whertheyreceived shuffled synonymous codons (Big, right). Thisresult
further supports the concegitat MIP biogenesis is regulated by the RNA sequences flanking
MCCs To evaluatewhether anypart of the context wepaticularly important to the prediction,

we trainedCAMAPs with eitherthe mRNA sequence@recedingor following the MCCs (red and

green lines in Fig4A). In both caseperformancesvere poor(Fig. 4A). For example, wen
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compaing the predictions given by mets trained with only the ps#gICC context to those traeu

with the

AUC
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Figure 4. Codon arrangementMAP Predictors (CAMAPS) predictions on MIP-flanking sequences.
(A) Area under the curveAUC) scorefor context sizesf 9, 27, 81 and 162 nucleotides. TEAMAPS
were tained per condition, the areas around the curves represents 95% confidence ifB¢@atselation
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betweenCAMAP predictions for a given sequence, using a context size of 162 nucleotides: predictions for
preMCC vs postMCC contexts (top), prICC vs whde context (middle), podiICC vs whole context
(bottom). Blue lines represent 2D densities.

postMCC context, we notethat thesepredictions weraveakly correlatedi( 1@ ¢ (Fig. 4B).
However, when we compat¢he preditions of either modetio those obtained when training on
full contextwal sequences, the correlationg@much highefi @ ). Collectively, theseesults
suggest thatf RNA sequenceare considexd individually, both contex (pre- andpostMCCs)

bear importat andnonredundanfeatures for MIP predictian

CAMAP s unveil positional codon preferences

ANNSs still carry the reputation of beingndecipherable black boxedt is true that the
interpretdion of the inner structures deepANNSsis still in its infancy On the other hand, simpler
architectures, such as the one userkin can be more easily probed to yielsefulinformation
about the way predictions are being made. Indeettained ANN remainsa fixed set of
mathematical transformations that can be studied, analyzedadhdory, interpretedin order to
assess the effect of individual codonstbe overall prediction, wéhereforepresented a single
codon at a single position the kestmodel traineadn calon sequencewith acontext size of 162
nucleotide. By running this setup for every codon at every position, wapertingthe prediction,
we isolatel the model preferences for individual codofisg. 5A and B). In other words,
preferences arthe prdoabilities retrievedwhen only a specific codon is preseatat asingle
position. A value of 0.5thereforedenotes a neutral preference, while negative and positive
preferences correspond to values below and aboyes8iectivelyPreferences for all clmrs are

available inSupplementaryig. S6.
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Figure 5. CAMAP interpretation of codon impact on MIP biogenesisPreferences for a network trained

on a context of 16Aucleotides (54 codons) fgfA) serine, proline and tyrosine codoasd (B) leucine
codons.(C) Learned codon embeddings and preferences at the position directly preceding the MCCs.
Proline codonsverethe only synonyms that foreda conspicuous clustehs indicated by the size of the

dots, codons on the rightand sidencreasd the probability of the sequence being classified as source,
whereas codons on the lfand side of the graph dhéhe opposite effect.

While codons aall positions contribuito the predictionthe most influential wee thosdocated

around 45 positions before or-3 positions aftethe MCC The presence of specific codons at

those positions can greatly increase (e.g. Serine codons) or de@epderoline codonghe
model 6s out {ig.6A). ;nthis baardwirelpm, prgferencesxhibit a strong symmetry
centered around the MCCs, where an increase in preference before the MCCs was always matched
with an increase after the MCCs and wiasa.Interestingly,when located in the close vicinity

of MCCs, prolines havebeen shown talecrease MIP biogenesisy preventingproteasomal
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cleavagdShimbara et al., 1998Which is reflected by the lower preferences for all proline codons
around the MCCIn other casesye observed thatynonymous codons had divengénpacts.

Indeed, CAMAP favored one tyrosine codon (TAT) but disfavored the other (TAC) GAg.

lower panel). The situation was even more complex for leucine, as two codonsowsicered

neutral, wheras one was favored and three were disfavor€gdAVAP (Fig. 5B). While CAMAP

showed similar preference for several synonymous codons, the preference magnitude showed
major discrepancies amotigem Examples of codondat exhibitednuch higher variatias than

their synonyms are TGTor cysteine, GA for aspartic acid, TTT for phenylalanine, CAT for

histidine, AAG for lysine, AAT for asparagine, and ACG for threonBepplementaryig. S6).

The use ofembeddings to encode codons has the advantageaofjmgtheminto a semantic
space, wherein dwns with similar influences apositionedclose to each otheWe calculated
the resulting semantic space as well as the preferences for everyfapttom position directly
precedingthe MCCs (Fig. 5¢) Most synonymous codonsidl not form clustersyith a notable
exception beingroline codons This finding indicatedthat the effect of a given codoon the
predction maybe closer to that of aonsynonymouscodon tharto that of a synonymwe also
determined thehangeof preferencesor every codon agvery position in the sequenckpicted
on the embedding spat®upplementary Vide81). Altogether these resulttighlight thespecific
influence of individual codons on the prediction, daher supporthe conclusion thatodon

choice playsa deteminingrole in MIP biogenesis
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Rules of MIP biogenesisare conserved

We nextwishedto determinewhetherthe rules that are usdady CAMAP to predict MIR
presentatiorareconserved across cell types and species. To answer this questinst trainel

a CAMAP using the flanking sequences ofiRg identified by mass spectrometry analyses of
human Blymphocytesasin Fig. 4 This CAMAP was thenevaluatedon a test set (including
positive and negative sequences that were not useZiAIAP training). As shownin Fig. 6A,
67.9% of positive sequences ¢ha prediction score > 0.5, whi&t.8%6 of negative sequencesctha

a score < 0.5.

A Human B-LCL B Mouse CT26
64.8% . 67_.93:%931 tisééfr:/z [ ] Neg.a.twe
24 n=19,658 : n=ys, i1n= Positive
= 60.7%
2 n=2835
(]
o
0 025 05 075 10 025 05 075 1
Prediction scores Mean prediction scores
C Human B-LCL D Mouse CT26

R?=0.0157 R?=0.0032

_(D
~
o

Prediction scores
o
o o
[&)] [&)]

0+t
0

I 10 15 20 0 10 20 30 40

Lowest binding affinity across MHC-I allele (x 10° nM)

Figure 6. MIP presentation rules derivedby CAMAP are conserved across species and cell types
CAMAP-derived prediction scores @A) human B cells sequences-{Bnphoblastoid cell line, B.CL)
and(B) RNA sequencing reads from the murine colon carcinoma cell line CT26. Predictions scéves for
andB are derived from the san@AMAP trained with a human-BCL training set. Positive sequergcare
compared either to negative sequen@dsaf the whole transcriptomd). Correlation betweeG@AMAP
prediction score and MHCbinding score for human-BCL (C) and mouse CT26X). Of note, the higher
proportion of strong binders in the human datésdtie to the fact that it has been designed to contain 1/5
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of source sequences (MHG@ffinity < 1,250 nM), whereas the mouse dataset is an unfiltered representation
of the transcriptome.

We then used this sam€AMAP (i.e. trained on human-Bmphocyte sguences) to extract
prediction scores froma dataset derived fror@T26 cells, a murine colon carcinoma cell line
(Laumont et al., 2018ositive sequencga=835)here have beecompared to the wholeT26
transcriptomeNotably, 60.7% of positive sequencegrecorrectly classified (prediction score >
0.5), while 68% ofthe transcriptomevas predicted to be nesource (score< 0.5, Fig. 6B).
Consistent with the fact that the utpncluded MCGflanking sequences but not MCC themselves,
the CAMAP prediction scorewere compétely independent of the MIP/MHRBInding affinityfor

both human and murine sequengeéig. 6C andD). These resultanply that the rulesearnedby
CAMAP on tuman healthy B_CL cells also apply to mouse CT26 colon carcinoma cells, and are

therefore conserveacrosshese two very different cell linekrived from different species

In vitro validation of the role codon usage in MIP presentation

We next wishedo validate predictions of o@AMAPS in a biological system and to gain some
insight into how codon usage might regulate MiliegenesisTo do so, we generated three
inducible reporter constructs that contained amino acids3®84of chicken ovalbumifOVA)
flanked byeGFRP2A (at the5 @&nd and P2AAmetrine @t the3 @&nd (Cinelli et al., 2000;
Shcherbakova et al., 2012)he wild-type cDNA sequence encoding timeodel SIINFEKL MIP
(OVA2s7064) Was locatedn the center of théhreeconstructs The sole differencebetween the
three constructs were the OVA RNA sequented flanked the SIINFEKL-codingcodonsi.e.,
RNA sequences codin@VAuiss2s6 and OVAvesage. The variableéSIINFEKL-flanking sequences
coded for the same amino acids but used different (synonyroadsiis. In one case, the codons

corresponded tthose of wild type OVAOVA-WT). In the othettwo caseswe usedCAMAP
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learned codon preferencégained on human BCL sequenced-ig. 4 and 5), to design silico

two OVA variants one predicted to maxie the presentation of SIINFEKL (enhanced
presentation, or EP), the otheredictedto minimize it (reduced presentation, or REAMAP
prediction scores for OVAP, OVARP and OVAWT were respectively: 0.96, 0.03, and 0.65
(Fig. 7A). In addition to OVAuazge, €ach construct coded for two other proteins: eGFP and
Ametrine. We used eGFP to evaluate tduason efficacy and the Ametrine/eGFP ratio to assess
translation efficacy.ndeed, ve reasoned thaiull-length translation of theonstruct would
produceequalnumbes of Ametrine and eGFP proteins but ti@errupted translation (i.e., DRiP
formation) would decrease thenetrineeGFP ratio (Fig. B). Of note start codons from the OVA
and Ametrine sequences were removed to ensatettanslation would lggn solely with the
eGFRstart codon. Also, the three proteins were separated with P28lsalfing peptide$kim

et al., 2011)to prevent artefacts causby fusion proteins (Fig.A). Theamount of SIINFEKL
MIPspresented at the surface of RAKY cells was estimated after-calture withthe CD8 T cell
hybridoma <cell | i n-g@alaBddidasewrhrespamse [orthe GIUNEEKE MIB
(Shastri and Gonzalez, 1993 remove the influence of differing gene expression levels on the
levels of SINFEKL presentation, results were normalized by both the eGFP mean fluorescence
intensity and the pragption of transduced cells in each specific samfierefore, thanost crucial
feature of oumodel wa that any difference between the three constoactisl be ascribed solely

to synonymous codon variants in the SIINFE#anking OVA codons.

Two main fndings emerged from our analyses. Firsgccordance witCAMAP predictions, the

OVA-EP variant led to a significantfald increase in SIINFEKIpresentaon, when compared to
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bothOVA-WT and OVARP variants(Fig. 7C). SIINFEKL presentation by OVARP trarsduced

cells wasreduced relativéo OVA-EPlevelsat all time pointsandbecamenferior to OVA-WT
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A e Ribosome
L—-> P2A P2A N * {Z
—_ 42 eGFP
LeGFPd L— OvA —! LAmetrine- = ** = 4X I & Ametr
metrine
B SIINFEKL peptide mRNA x X
Variable context protein
Interrupted translation:
OVA prediction scores
WT EP RP . DRiPs *
0.65 0.98 0.03 ;-:?\"“fé‘.::j = ** > X
c Peptide presentation D Translation reporter
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Figure 7. Codon usage influenceantigen presentaton and translation efficiency.(A) Design of the
inducible Translation Reporter (iIFRVA) constructs and prediction scores for OWAT, OVA-EP and
OVA-RP sequencegB) Schematic naresentation of possible translation eveitfien mRNA codon
usage leads tefficient (uninterrupted) translation, similar amounts of eGFP and Ametrine proteihd

be synthesized. When codon usage in the Ma@king regions enhanse¢he frequency of translation
interruption, a lower Ametrine/eGFP ratimuld beobserved. (CKinetics of SIINFEKL presentation as a
MIP at the cell surface following induction of iFTBVA constructs expression by doxycycline, measured
by colorimetric LacZactivity in a T-cell activation assay.o remove the influence of differential expression
levds on antigenic presentatigifearson et al., 201@nd to account fothe varying proportion of
transduced cells from one sample to anotiesell activation levels were normalized to both the mean
eGFP fluorescence intensity athé proportion of cells expressing the constr{iz}.Translation efficiency

as measured by Artrene/eGFP ratio following iTROVA construct induction. FOE andD, results for EP
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and RP are normalized over WT sample from the same experiment. Statifecahdes at each time point
were determined using bilateral paired Student T test. Compagsonst WT are indicated with *, while
comparisos of EP vs RRareindicated withA

levels at 24h posinduction. Second, translation efficiency (Ametrine/eGFP ratio) was always
higher in cells transduced with OVRP than cells transducedth OVA-EP or O/A-WT (Fig.

7D). Hence, synonymous codon variations led to divergent outcomes inRER&d OVARP:
enhanced translation efficiency in OMAP andenhanced SIINFEKL presentation in OVEZP.
Thesedatasuggesthat, since improvemeim SIINFEKL presentatiorby OVA-EP couldnot be
ascribed to increased translation efficiencynay instead haveesuled from increased DRIiP

formationduring translation of SIINFEKiflanking OVA sequences.

Discussion

Each HLA allotype presents no more thaid% of the potentlad-mer peptides from human
proteincoding gens (Abelin et al., 2017)A recent report showed that the entire MIP repertoire
presented by 27 HLA allotypes covered only 10% of the exomic sequences expressed in B
lymphocytes(Pearson et al., 2016l line with thisfinding, less than 1% of expressed tumor
mutations generate immmagenic MIPgYadav and Delamarre, 2018)he need for peptides to be
strong MHC binders in order to become MIPs severely constrains the diversity of the MIP
repertoire. However, MHC binding is not the sole limiting factor. Indeed, vghdetically all
proteins contain peptides that would be strong MHC bin@doof et al., 2012)about 40% of
proteins generate no MIPs while other prote&iasgenerate up to 64 MIPs/ge(féearson et al.,
2016) Hence, some protas are good sources of MIPs while others are not. Therefore, events that
precede MHC binding must have a determinant influence tloa biogenesis of the

immunopeptidome. Efforts to decipher the rules of MIP processing have heretofore focused on
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various postranslational events: cleavage by the proteasome and other proteakdesding to
proteins such as TAF2 and ERAAP. However, seminal studies have demonstratedviirat
biogenesis is clearly regulated at the translation level, and that mosbhtifPste from proteins

that undergo proteasomal degradatiortramslationally or in the minutes that follow translation
(Dolan et al., 2011)This pool of rapidly degraded proteins includes a large proportion of DRiPs

that arise from errors in protein translation or folding

Becausecodon usage regulates translation accuracy, efficiency arichreglational protein
folding, we investigated whether codon choice might regulate MIP biogenesis. Our analyses of
large datasets using diverse bioinformatipproaches provides compedtii evicence that codon
usage regulates MIP biogenesis via both shantl longrange effectsOver their entire length,
MIP-source transcripts use more low affinity codons than the rest of the transcriptome\jFig. 1
More indepth analyses of thitanking codonson each side of the MCCs revealed differential
usageof synonymous codongn the MCC flanking regions compared to the rest of the
transcriptomgFig. 2, 4) Mechanistically, two features of MGflanking sequences can explain
the impact of codon uga on MP biogenesi¢Fig. 3): thesemRNA sequenceareless stable tha

the rest of the transcriptome and are enrichaxltof-frame stop codong.hese two features are
expected to increase DRIP formation since RiMstability promotes protein misfolding while
stop codons induceonsensemediated decayKarousis et al.,, 2016; Pearson et al., 2016)
Interestingly most outof-frame stop codons wereund in the-1 frameshifed sequenceThis
resultcould indicate that cells are biased towards presenting 8iR/ed from sequences prone
to -1 ribosomal slippagea frameshifthat is alscassociated witlviral sequencefAtkins et al.,

2016; Dinman, 1995; Wang et £#2019)
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Our study illustrates tha&NNs can be used not only for prediction but also to extract relevant
biological features frontarge datasets, and thereby provide mechanistic insighéscimmplex
biological processesHere we elected to use embeddingecause their capacity to represent
discreeinputs into an interpretablatentcontinuous space maktem especially welsuited for
codon analysisThreemain points can be made from the performanceCAMAPSs trained to
discriminate betweesource (i.eMCC-flanking regiony andnonsource sequences (iregions
randomly extracted from the transcriptomEirst, the better predictionceuracy of CAMAPS
trained with original codons rather than with shuffled synonyms supports the critecaf cdon
usae in MIP genesi¢Fig. 4). Second, thenterpretationof CAMAPS output and inner structure
showed that while positionsdistant from as mutas 54 codonfrom the MCCsinfluencethe
prediction(Fig. 4), positions directly adjacent to the MCCs disproportietyahfluence the output
(Fig. 5). Third, synonymous codarhave different effects on the predicti@ffig. 45). Thus, in
codons adjacent to thd@CCs, tyrosinecodon TAT increased the probability of the sequence being

classified as sourceshile TAC decreaed it (Fig. B).

The functional link between codon usael MIP biogenesis was further strengthened by our in
vitro analyses ofSIINFEKL biogenesis. Indeed, we were able to modify presentation of the
SIINFEKL MIP by substitution of synonymousodors in cDNA regions flankingSIINFEKL
codons. The disconnect beten the amount of SIINFEKlpresented at the cell surface and
translation efficiency further supports the importance of DRIP formation in MIP biogenksss.
experiment also highlighted ¢canslaional degradation odulated by synonymous codoisage

as a key mechanismegulatingdifferential MIP presentatioifwo analyses suggest that the role
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of codon bias in MIP biogenesis is evolutionary conserf dCAMAP preference rules learned
on 9mer MIPspresented by human Briyphocytes also applied to mouse CT26 colon carcinoma
cells (Fig. 6) and2) remained valid for presentation in mouse cells of-ame8 MIP derived from

a chicken protein (Fig. 7).

Our study highlights synonymous codon usage asndafmentally important Ui previously
overlooked mechanism regulating MIP presentation. Howexeehavemostlylimited our studies

to the most common type of MIPS:mers peptidescoded by the canonical reading framwie
anrotatedproteincoding genegTrolle et al., 2016) Further aalyses of large datasetwill be
needed to assess the full extent of codon usage on both classic MIPs, and MIPs derived-from non
canonical reading framé¢saumont et al., 2016).ikewise, further studies will be requirgdorder

to evaluate whether codon biesbiologically relevant to immunosurveillance against pathogens
or transformed cellsA more practical implication of our work ithe integraton of both
translational (codon usage) and pwanslational events (e.g., MH@nding affinity) in predictive
algorithms may greatly enhance the predictive modeling of the immunopeptidome. This
applicationwould be particularly useful in the field ofro@er immunotherapy where discovery of

suitable target antigememairs a formidable ltallenge(Ehx and Perreault, 2019)
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Methods
Sequence extraction

Sequences were extracted using the Pyffamkage pyGen(Daouda et al., 201&yersion 1.2.8)

with the human reference genome GRCh37.75.

Synonymous codon shuffling

For the KL analysis,ah sequence was-eacoded by replacing each codeith itself orwith a
random synonym according to usdgequency calculated on the sequence dataset (positive or
negative). This transformation ensures that codon usage biases specific to positivgatind ne
datasets are conserved. BAMAP analyses, the same transformation was applied to sequences

of both datasets (positive or negative). In this case, codons were replaced according to the human
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transcriptome usage frequencies provided by pyGeno. Tresgeehcies were calculatedsilico
on transcript coding sequences usingaietations provided bignserbl for the human reference
genome GRCh37.75. This transformation erases all codon specific features from each dataset,

while retaining amino acid features.

Statistics

Correlations and Fisher exact test results were computed using the R software. AUCs were
computed using the Python package Skle@adregosa et al., 201T)ranscript lengths for
Supplementary FigS1l were extracted using pyGeno amotations provided ypEnsembfor the

human reference genome GRCh37.75.

CAMAP sequence encoding and training

CAMAPs were trained on sequences resulting from the concatenation -oammtepostMCC

regions. Before presenting sequences to @MMAPS, we associated each codon to aquei
number ranging from 1 todg(we reserved 0O to indicate a null value) and used this encoding to
transform every sequence into a vector of integers representing codons. Neural networks were built
using the Python package Mariana  (Daouda, 2015)
[https://lwww.github.com/tarigdaouda/Mariana]. TEenbeddinglayer of Mariana was used to
associate each label superior to 0 to a set of 2D trainable pargintie¢ O label representsall
(masking) embedding fixed at coordinates (0,0). As an output layer, we Ssditn@Xayer with

two outputs (positive / negative). Because negative sequences are more numerous than positive
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ones, we used an oversamplsigitegy during training. At each epo@AMAPSs were randomly

presented with the same number of positive and negative sequences.

Each point in Fig A corresponds to a differel@@AMAP. We trained terCAMAPs for each
combination of conditions (context sizecodonshuffling x context availability), each one using

a different random split of train/validation/test sets. We used an early stopping strategy on the
validation sets to prevent ovétting and reported average performances computed on test sets.
To mask sgquences either before or after the MCC, we masked either halhwlitkialue. For Fig

4A, tenCAMAPs were trained for each condition (withoutME€C context, without postCC
context, with full context). AICAMAPs were trained using the same train/validatest split.

For each sequence in the test set we calculated the average prediction score GABRABYIN

each condition, and calculated the Pearson correlation using the R software. Densities were
calculated on all points and drawn using ggplot2. Omgndom subset of the points is represented

in the figures to limit their size. AICAMAPs in this work share the same architecture
(Supplementary Figss), number of parameters and hyparameter values: learning rate: 0.001;
mini-batch size: 64; embeddirdimensions: 2; linear output without offset on the embedding

layer; Softmaxnonlinearity without offset on the output layer.

Codon preferences

Preferences were obtained by feeding @&MAP embedding vectors where all codons values
were set taull (coodinates (0,0)), except for a single position that received anathrcodon

label.
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Analysis of enriched outof-frame codons

Codon counts in both alternative reading frames, +1-andere obtained in the prand post

MCC contexts in source and ngouce sequence datasets. The MCC context length was set to 54
codons on both sides. Positional odds ratio between source arsburae oubf-frame codon

counts were calculated for all 64 codons, at each of the 106 positions (the frameshift caused a loss
of the 2 endmost codons). A unidirectional Fisher exact test was performed on each codon at each
position using the R software thioptions « alternative = "greater”, or = 1.1 ». Tib# hypothesis

was that the codonds oddlswhictadimsat correcting fprufalse o r
positive hits featuring high counts and relatively small odds ratios. Graphs were genesiag

the Altair interactive visua#iation package in Python.

Folding analysis

RNA sequence folding wagerformedusing the MC-Flashfold program(Dallaire and Major,

2016) We were most interested in the energy contribution of the context closest to the MCC,
which prompted us to set the context lengths at 30 codons (90 nucleotides). This shorter length
(compared to 54) was also driviepthe fact that RNA folding usually performs better with a more
targeted selection choice. The MCC was included as well jiygeidtotal length of 207 nucleotides

per folded sequence. Naource counts were divided by 5 to get equivalent numbers okvalue

each bin.
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Predictions on sourcetranscripts from murine CT26

Data from RNAsequencing and MIP identification on murin€Z6 colon carcinoma cells were
extracted fromLaumont et al.(2018) Only 9 amino acidong MIP deriving from the canonical
proteome and with a rank sco@% for either H2Kd or H2Dd (NetMHCConsl.1) were

included in this analysis.

In order to directly predict MIP presentationfraCT26 cells RNA sequencing reads, which were

only 75 nucleotides long, we trained @MAP using a dataset of positive and negative@_
sequences with a context size of 24 nucleotidesqpnéext and postontext = 24 nucleotides

each, MCC = 27 nucleotd, total = 75 nucleotides). Here agadtAMAP was trained using
sequences generated by the concatenation-oApdgpostMCC regions (i.e. excluding the MCC).

Then, thiSCAMAP (i.e. trained on human-BCL seqences) was used to derive prediction scores

on reads originating from CT26 cells, from which the middle 27 nucleotides (positions 25 to 51,
corresponding to the MCC) had been removed. Positive sequences were defined as reads encoding
for a MIP, detected bgnass spectrometry, in their corresponding MCgiae (position 25 to 51).

As different reads can translate into the same amaaid sequence, the average prediction score

of reads associated to a given MIP are shown in Bar@él D

iITR-OVA design

An inducible translation reporter was generated byking the truncated chicken ovalbumin
(OVA) cDNA (amino acids 14886)with EGFRP 2 A (i n 5MAme tarmnidn ePRMAI n 3 0)
sequencesMCC-flanking contexts for the EP and RP construct were synthesizedlaskgB

(purchased from Integrated DNA Technologid$he fragments were amplified by PCR and joined
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by Gibson assembly under a doxycyclinducible TetON promoter in a pCW backbone.
Synthetic variants of the OVAoding sequenceere generateih silico by varying synonymous

codon usage in the MIP conteregions (i.e. 162 nucleotides prand postMCC). Importantly,

the amino acid sequence was preserved between the different variants; only nucleotide sequences
in the MIP context differed. The sequenceshvite highest (EP) and the lowest (RP) prediction
scores were selected for furtharvitro validation and swapped into the iT®/A plasmid by

Gibson assemblyGibson et al., 2009)OVA-EP and OVARP sequencesan be found in

Supplementary Tabl82.

Cell lines

Raw-K" (Bell et al., 2013)RawK® OVA-WT, RawK® OVA-EP and RawK” OVA-RP cell lines
were cultured in DMEM suppieented with 10% Fetal Bovine Serum (FBS), Penicilin (100
units/ml), and streptomycin (100mg/ml). B3Z cdliGarttunen et al., 1992)ere maintainedn
RPMI medium supplemented with 5% FBS, penicillin (100 units/ml), and streptomycin

(200mg/ml).

Stable cell line generation

Lentiviral particles were produced from HEK293T cells by-transfection of iTROVA WT, EP
or RP along with pMD2/SVG, pMDLg/pRREand pRSVYREV plasmids. Viral supernatants
were used for Raw(b transduction. Rawi® OVA-WT, RawK® OVA-EP were sorted on

Ametrine and GFP doubfeositive population after 24h of doxycycline treatment (1 mg/ml).
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Antigen presentation assay

Raw-KP OVA-EP, O/A-RP and OVAWT cells were plated at a density of 250,000 cells/well in
24 welkplates 24h prior to doxycycline treatment (1 mg/ml). After theesponding treatment
duration, cells were harvested and fixed using PFA 1% for 10 minutes at room temysardture
washed using DMEM 10% FBS. Rel&? were then cacultured (37°C, 5% C§)in triplicates with
the CD8 T cell hybridoma cell line B3Z cells aB2 ratio for 16h (7.5 x T0B3Z and 5 x 10
Raw-KP) in 96 wellplates. Cells were lysed for 20 minutesaim temperature using 50 pl/well
of lysis solution (25mM TriBase, 0.2 mM CDTA, 10% glycerol, 0.5% Tritor1X0, 0.3mM
DTT; pH 7.8). 170 pl/well CRG buffer was added (0.15mM chlorophenol -ted-
galactopyranoside (Roche), 50mM MN®QA 7.6f 35mM NaHPQA k0, 9mM KCI, 0.9mM
MgSQA 7,8) .-galdrtosidase activity was measured at 575 nm using SpectraMax® 190
Microplate Reader (Molecular Device$).pamllel, cells were analyzed by flow cytometry using

a BD FACS Cantoll for eGFP and Ametrine fluorescence.

Data visualization and availability

Al | figures were generated using RO6s package

Source code for py@® and Mariana are freely availalfkgtps://github.con/tarigdaouda/pyGeno

andhttps://github.com/tarigdaouda/Marigneluman BLCL RNA-Seq data cabe accessed on

the NCBI Bioproject database ht{p//www.ncbi.nlm.nih.gov/bioproject/ accession

PRJINA286122), while murine CT26 RN3eq data can be accesssattler the GEO accession
number GSE111092/4ass spectrometry data can be found on the ProteomeXchange Consortium

via the PRIDE partner repository (hamBLCL: PXD004023 and murine CT2&XD009065
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https://github.com/tariqdaouda/Mariana
http://www.ncbi.nlm.nih.gov/bioproject/

and 10.6019/PXD0090§5AllI other data and source codes supporting the findings of this study

are avdable from the corresponding authors upon reasonable request.

Supplementary information is available in th@nline version of the paper.
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Supplementary Figure S1. Percentage of transcript ineligibility as a funotiof context size. Transcript
length corresponds © x 2 + 27 whereC is the context gie in hucleotides and 27 the length of the MCCs.
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Supplementary Figure S2. Distribution of alanine, cysteine, aspartic acid, glutamic acid, pakmmne,
glycine, histidine, isoleucine, lysine, leucine, methionine and asparaginescimdpositive and negative
datasets. Spikes and drops are represented inRelaged to Figure 2.
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Supplementary Figure S3. Distribution of proline, glutamine, airgne, serine, threonine, valine,
tryptophan and tyrosine codons in positive and negdttasets. Spikes and drops are represented in blue.
Related to Figure 2.
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